Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Integrative analysis of histone ChIP-seq and transcription data using Bayesian mixture models

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. AA9int: SNP interaction pattern search using non-hierarchical additive model set

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Modeling tissue contamination to improve molecular identification of the primary tumor site of metastases

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. The splicing factor RBM25 controls MYC activity in acute myeloid leukemia

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub regulating granulo-monocytic fates

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Differences in Cell Cycle Status Underlie Transcriptional Heterogeneity in the HSC Compartment

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Human adult HSCs can be discriminated from lineage-committed HPCs by the expression of endomucin

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer
Histone modifications are a key epigenetic mechanism to activate or repress the transcription of genes. Datasets of matched transcription data and histone modification data obtained by ChIP-seq exist, but methods for integrative analysis of both data types are still rare. Here, we present a novel bioinformatics approach to detect genes that show different transcript abundances between two conditions putatively caused by alterations in histone modification.
OriginalsprogEngelsk
TidsskriftBioinformatics
Vol/bind30
Udgave nummer8
Sider (fra-til)1154-62
ISSN1367-4803
DOI
StatusUdgivet - 22 jan. 2014

ID: 42873015