TY - JOUR
T1 - Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes
AU - Pilegaard, Henriette
AU - Keller, Charlotte
AU - Steensberg, Adam
AU - Helge, Jørn Wulff
AU - Pedersen, Bente Klarlund
AU - Saltin, Bengt
AU - Neufer, P Darrell
PY - 2002/5/15
Y1 - 2002/5/15
N2 - Transcription of metabolic genes is transiently induced during recovery from exercise in skeletal muscle of humans. To determine whether pre-exercise muscle glycogen content influences the magnitude and/or duration of this adaptive response, six male subjects performed one-legged cycling exercise to lower muscle glycogen content in one leg and then, the following day, completed 2.5 h low intensity two-legged cycling exercise. Nuclei and mRNA were isolated from biopsies obtained from the vastus lateralis muscle of the control and reduced glycogen (pre-exercise glycogen = 609 +/- 47 and 337 +/- 33 mmol kg(-1) dry weight, respectively) legs before and after 0, 2 and 5 h of recovery. Exercise induced a significant (P < 0.05) increase (2- to 3-fold) in transcription of the pyruvate dehydrogenase kinase 4 (PDK4) and uncoupling protein 3 (UCP3) genes in the reduced glycogen leg only. Although PDK4, lipoprotein lipase (LPL) and hexokinase II (HKII) mRNA were elevated in the reduced glycogen leg before exercise, no consistent difference was found between the two legs in response to exercise. In a second study, six subjects completed two trials (separated by 2 weeks) consisting of 3 h of two-legged knee extensor exercise with either control (398 +/- 52 mmol kg(-1) dry weight) or low (240 +/- 38 mmol kg(-1) dry weight) pre-exercise muscle glycogen. Exercise induced a significantly greater increase in PDK4 transcription in the low glycogen (> 6-fold) than in the control (< 3-fold) trial. Induction of PDK4 and UCP3 mRNA in response to exercise was also significantly higher in the low glycogen (11.4- and 3.5-fold, respectively) than in the control (5.0- and 1.7-fold, respectively) trial. These data indicate that low muscle glycogen content enhances the transcriptional activation of some metabolic genes in response to exercise, raising the possibility that signalling mechanisms sensitive to glycogen content and/or FFA availability may be linked to the transcriptional control of exercise-responsive genes.
AB - Transcription of metabolic genes is transiently induced during recovery from exercise in skeletal muscle of humans. To determine whether pre-exercise muscle glycogen content influences the magnitude and/or duration of this adaptive response, six male subjects performed one-legged cycling exercise to lower muscle glycogen content in one leg and then, the following day, completed 2.5 h low intensity two-legged cycling exercise. Nuclei and mRNA were isolated from biopsies obtained from the vastus lateralis muscle of the control and reduced glycogen (pre-exercise glycogen = 609 +/- 47 and 337 +/- 33 mmol kg(-1) dry weight, respectively) legs before and after 0, 2 and 5 h of recovery. Exercise induced a significant (P < 0.05) increase (2- to 3-fold) in transcription of the pyruvate dehydrogenase kinase 4 (PDK4) and uncoupling protein 3 (UCP3) genes in the reduced glycogen leg only. Although PDK4, lipoprotein lipase (LPL) and hexokinase II (HKII) mRNA were elevated in the reduced glycogen leg before exercise, no consistent difference was found between the two legs in response to exercise. In a second study, six subjects completed two trials (separated by 2 weeks) consisting of 3 h of two-legged knee extensor exercise with either control (398 +/- 52 mmol kg(-1) dry weight) or low (240 +/- 38 mmol kg(-1) dry weight) pre-exercise muscle glycogen. Exercise induced a significantly greater increase in PDK4 transcription in the low glycogen (> 6-fold) than in the control (< 3-fold) trial. Induction of PDK4 and UCP3 mRNA in response to exercise was also significantly higher in the low glycogen (11.4- and 3.5-fold, respectively) than in the control (5.0- and 1.7-fold, respectively) trial. These data indicate that low muscle glycogen content enhances the transcriptional activation of some metabolic genes in response to exercise, raising the possibility that signalling mechanisms sensitive to glycogen content and/or FFA availability may be linked to the transcriptional control of exercise-responsive genes.
KW - Adult
KW - Bicycling/physiology
KW - Blood Glucose/metabolism
KW - Cell Nucleus/physiology
KW - DNA/biosynthesis
KW - Dietary Carbohydrates/pharmacology
KW - Exercise/physiology
KW - Fatty Acids, Nonesterified/blood
KW - Gene Expression Regulation/physiology
KW - Glycogen/blood
KW - Humans
KW - Leg/physiology
KW - Male
KW - Metabolism/genetics
KW - Muscle, Skeletal/metabolism
KW - Oxygen Consumption/physiology
KW - RNA, Messenger/biosynthesis
KW - Reverse Transcriptase Polymerase Chain Reaction
U2 - 10.1113/jphysiol.2002.016832
DO - 10.1113/jphysiol.2002.016832
M3 - Journal article
C2 - 12015434
SN - 0022-3751
VL - 541
SP - 261
EP - 271
JO - The Journal of physiology
JF - The Journal of physiology
IS - Pt 1
ER -