TY - JOUR
T1 - Inductive measurement and encoding of k-space trajectories in MR raw data
AU - Pedersen, Jan Ole
AU - Hanson, Christian G
AU - Xue, Rong
AU - Hanson, Lars G
PY - 2019/12
Y1 - 2019/12
N2 - OBJECTIVES: The objective of this study was to concurrently acquire an inductive k-space trajectory measure and corresponding imaging data by an MR scanner.MATERIALS AND METHODS: 1D gradient measures were obtained by digital integration, regularized using measured gradient coil currents and recorded individually by the scanner concurrently with raw MR data. Gradient measures were frequency modulated into an RF signal receivable by the scanner, yielding a k-space trajectory measure from the cumulative phase of the acquired data. Generation of the gradient measure and frequency modulation was performed by previously developed custom, versatile circuitry.RESULTS: For a normal echo planar imaging (EPI) sequence, the acquired k-space trajectory measure yielded slightly improved image quality compared to that obtained from using the scanner's estimated eddy current-compensated k-space trajectory. For a spiral trajectory, the regularized inductive k-space trajectory measure lead to a 76% decrease in the root-mean-square error of the reconstructed image.DISCUSSION: While the proof-of-concept experiments show potential for further improvement, the feasibility of inductively measuring k-space trajectories and increasing the precision through regularization was demonstrated. The approach may offer an inexpensive method to acquire k-space trajectories concurrently with scanning.
AB - OBJECTIVES: The objective of this study was to concurrently acquire an inductive k-space trajectory measure and corresponding imaging data by an MR scanner.MATERIALS AND METHODS: 1D gradient measures were obtained by digital integration, regularized using measured gradient coil currents and recorded individually by the scanner concurrently with raw MR data. Gradient measures were frequency modulated into an RF signal receivable by the scanner, yielding a k-space trajectory measure from the cumulative phase of the acquired data. Generation of the gradient measure and frequency modulation was performed by previously developed custom, versatile circuitry.RESULTS: For a normal echo planar imaging (EPI) sequence, the acquired k-space trajectory measure yielded slightly improved image quality compared to that obtained from using the scanner's estimated eddy current-compensated k-space trajectory. For a spiral trajectory, the regularized inductive k-space trajectory measure lead to a 76% decrease in the root-mean-square error of the reconstructed image.DISCUSSION: While the proof-of-concept experiments show potential for further improvement, the feasibility of inductively measuring k-space trajectories and increasing the precision through regularization was demonstrated. The approach may offer an inexpensive method to acquire k-space trajectories concurrently with scanning.
KW - Encoding of signals in MRI raw data
KW - Gradient imperfections
KW - Inductive measurement of k-space trajectories
KW - Magnetic resonance imaging
KW - Regularization by current measure
UR - http://www.scopus.com/inward/record.url?scp=85069945081&partnerID=8YFLogxK
U2 - 10.1007/s10334-019-00770-2
DO - 10.1007/s10334-019-00770-2
M3 - Journal article
C2 - 31363869
SN - 0968-5243
VL - 32
SP - 655
EP - 667
JO - Magma (New York, N.Y.)
JF - Magma (New York, N.Y.)
IS - 6
ER -