Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital

Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


  1. Paroxysmal Cranial Dyskinesia and Nail-Patella Syndrome Caused by a Novel Variant in the LMX1B Gene

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Expansion of the phenotypic spectrum of de novo missense variants in kinesin family member 1A (KIF1A)

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

The neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) is caused by a CAG-repeat expansion in the ATXN3 gene. In this study, induced pluripotent stem cell (iPSC) lines were established from two SCA3 patients. Dermal fibroblasts were reprogrammed using an integration-free method and the resulting SCA3 iPSCs were differentiated into neurons. These neuronal lines harbored the disease causing mutation, expressed comparable levels of several neuronal markers and responded to the neurotransmitters, glutamate/glycine, GABA and acetylcholine. Additionally, all neuronal cultures formed networks displaying synchronized spontaneous calcium oscillations within 28days of maturation, and expressed the mature neuronal markers NeuN and Synapsin 1 implying a relatively advanced state of maturity, although not comparable to that of the adult human brain. Interestingly, we were not able to recapitulate the glutamate-induced ataxin-3 aggregation shown in a previously published iPSC-derived SCA3 model. In conclusion, we have generated a panel of SCA3 patient iPSCs and a robust protocol to derive neurons of relatively advanced maturity, which could potentially be valuable for the study of SCA3 disease mechanisms.

TidsskriftStem Cell Research
Udgave nummer2
Sider (fra-til)306-317
Antal sider12
StatusUdgivet - 16 aug. 2016

ID: 48957313