Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital

Incorporating symptom data in longitudinal disease trajectories for more detailed patient stratification

Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

  1. Unpacking telemonitoring work: Workload and telephone calls to patients in implanted cardiac device care

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

  2. A qualitative study of COPD-patients' experience of a telemedicine intervention

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

  3. MiBAlert-a new information tool to fight multidrug-resistant bacteria in the hospital setting

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

  4. FindZebra: a search engine for rare diseases

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

Vis graf over relationer

OBJECTIVE: Use symptoms to stratify temporal disease trajectories.

MATERIALS AND METHODS: We use data from the Danish National Patient Registry to stratify temporal disease pairs by the symptom distributions they associate to. The underlying data comprise of 6.6 million patients collectively assigned with 7.5 million symptoms from chapter XVIII in the WHO International Classification of Disease version 10 terminology.

RESULTS: We stratify 33 disease pairs into 67 temporal disease-symptom-disease trajectories from three main diagnoses (two diabetes subtypes and COPD), where the symptom significantly changes the risk of developing the subsequent diseases. We combine these trajectories into three temporal disease networks, one for each main diagnosis. We confirm apparent relations between diseases and symptoms and discovered that multiple symptoms decrease the risk for diabetes progression.

CONCLUSION: Symptoms can be used to stratify disease trajectories, and we suggest that this approach can be applied to temporal disease trajectories systematically using structured claims data. The method can be extended to also use text-mined symptoms from unstructured data in health records.

TidsskriftInternational Journal of Medical Informatics
Sider (fra-til)107-113
Antal sider7
StatusUdgivet - sep. 2019

Bibliografisk note

Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.

ID: 57841862