Abstract
BACKGROUND AND AIMS: The incretin effect is impaired in type 2 diabetes (T2D), but the underlying mechanisms are only partially understood. We investigated the relationships between the time course of the incretin effect and that of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) during oral glucose tolerance tests (OGTTs), thereby estimating incretin sensitivity of the beta cell, and its associated factors.
METHODS AND RESULTS: Eight patients with T2D and eight matched subjects with normal glucose tolerance (NGT) received 25, 75, and 125 g OGTTs and corresponding isoglycemic glucose infusions (IIGI). The time course of the incretin effect, representing potentiation of insulin secretion by incretins (PINCR), was determined by mathematical modelling as the time-dependent fold increase in insulin secretion during OGTT compared to IIGI. The time course of PINCR was correlated with that of both GIP and GLP-1 in each subject (median r = 0.67 in NGT and 0.45 in T2D). We calculated an individual beta cell sensitivity to incretins (SINCR) using a weighted average of GIP and GLP-1 (pooled incretin concentration, PIC), as the slope of the relationship between PINCR and PIC. SINCR was reduced in T2D (p < 0.01). In the whole group, mean PIC, GIP and GLP-1 concentrations during the OGTT were inversely correlated with SINCR, but T2D had lower PIC, GIP and GLP-1 levels at the same SINCR (p < 0.05).
CONCLUSION: Relative incretin insensitivity is partly compensated for by higher incretin secretory responses. However, T2D shows both impairment in incretin sensitivity and abnormal compensation by incretin secretion.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Nutrition, metabolism, and cardiovascular diseases : NMCD |
Vol/bind | 27 |
Udgave nummer | 12 |
Sider (fra-til) | 1123-1129 |
Antal sider | 7 |
ISSN | 0939-4753 |
DOI | |
Status | Udgivet - dec. 2017 |