TY - JOUR
T1 - Impact of dietary gluten on regulatory T cells and Th17 cells in BALB/c mice
AU - Antvorskov, Julie Christine
AU - Fundová, Petra
AU - Buschard, Karsten Stig
AU - Funda, David
PY - 2012
Y1 - 2012
N2 - Dietary gluten influences the development of type 1 diabetes (T1D) and a gluten-free (GF) diet has a protective effect on the development of T1D. Gluten may influence T1D due to its direct effect on intestinal immunity; however, these mechanisms have not been adequately studied. We studied the effect of a GF diet compared to a gluten-containing standard (STD) diet on selected T cell subsets, associated with regulatory functions as well as proinflammatory Th17 cells, in BALB/c mice. Furthermore, we assessed diet-induced changes in the expression of various T cell markers, and determined if changes were confined to intestinal or non-intestinal lymphoid compartments. The gluten-containing STD diet led to a significantly decreased proportion of γδ T cells in all lymphoid compartments studied, although an increase was detected in some γδ T cell subsets (CD8(+), CD103(+)). Further, it decreased the proportion of CD4(+)CD62L(+) T cells in Peyer's patches. Interestingly, no diet-induced changes were found among CD4(+)Foxp3(+) T cells or CD3(+)CD49b(+)cells (NKT cells) and CD3(-)CD49b(+) (NK) cells. Mice fed the STD diet showed increased proportions of CD4(+)CD45RB(high+) and CD103(+) T cells and a lower proportion of CD4(+)CD45RB(low+) T cells in both mucosal and non-mucosal compartments. The Th17 cell population, associated with the development of autoimmunity, was substantially increased in pancreatic lymph nodes of mice fed the STD diet. Collectively, our data indicate that dietary gluten influences multiple regulatory T cell subsets as well as Th17 cells in mucosal lymphoid tissue while fewer differences were observed in non-mucosal lymphoid compartments.
AB - Dietary gluten influences the development of type 1 diabetes (T1D) and a gluten-free (GF) diet has a protective effect on the development of T1D. Gluten may influence T1D due to its direct effect on intestinal immunity; however, these mechanisms have not been adequately studied. We studied the effect of a GF diet compared to a gluten-containing standard (STD) diet on selected T cell subsets, associated with regulatory functions as well as proinflammatory Th17 cells, in BALB/c mice. Furthermore, we assessed diet-induced changes in the expression of various T cell markers, and determined if changes were confined to intestinal or non-intestinal lymphoid compartments. The gluten-containing STD diet led to a significantly decreased proportion of γδ T cells in all lymphoid compartments studied, although an increase was detected in some γδ T cell subsets (CD8(+), CD103(+)). Further, it decreased the proportion of CD4(+)CD62L(+) T cells in Peyer's patches. Interestingly, no diet-induced changes were found among CD4(+)Foxp3(+) T cells or CD3(+)CD49b(+)cells (NKT cells) and CD3(-)CD49b(+) (NK) cells. Mice fed the STD diet showed increased proportions of CD4(+)CD45RB(high+) and CD103(+) T cells and a lower proportion of CD4(+)CD45RB(low+) T cells in both mucosal and non-mucosal compartments. The Th17 cell population, associated with the development of autoimmunity, was substantially increased in pancreatic lymph nodes of mice fed the STD diet. Collectively, our data indicate that dietary gluten influences multiple regulatory T cell subsets as well as Th17 cells in mucosal lymphoid tissue while fewer differences were observed in non-mucosal lymphoid compartments.
KW - Animals
KW - Diet, Gluten-Free
KW - Dietary Proteins/pharmacology
KW - Flow Cytometry
KW - Glutens/pharmacology
KW - Mice
KW - Mice, Inbred BALB C
KW - Peyer's Patches/drug effects
KW - T-Lymphocyte Subsets/drug effects
KW - T-Lymphocytes, Regulatory/drug effects
KW - Th17 Cells/drug effects
U2 - 10.1371/journal.pone.0033315
DO - 10.1371/journal.pone.0033315
M3 - Journal article
C2 - 22428018
SN - 1932-6203
VL - 7
SP - e33315
JO - PLoS One
JF - PLoS One
IS - 3
M1 - e33315. doi:10.1371/journal.pone.0033315
ER -