Imidazoline NNC77-0074 stimulates insulin secretion and inhibits glucagon release by control of Ca(2+)-dependent exocytosis in pancreatic alpha- and beta-cells

Marianne Høy, Hervør L Olsen, Henrik S Andersen, Krister Bokvist, Karsten Buschard, John Hansen, Palle Jacobsen, Jacob S Petersen, Patrik Rorsman, Jesper Gromada


We have investigated the effects of the novel imidazoline compound (+)-2-(2-(4,5-dihydro-1H-imidazol-2-yl)-thiopene-2-yl-ethyl)-pyridine (NNC77-0074) on stimulus-secretion coupling in isolated pancreatic alpha- and beta-cells. NNC77-0074 stimulated glucose-dependent insulin secretion in intact mouse pancreatic islets. No effect was observed at </=2.5 mM glucose and maximal stimulation occurred at 10-15 mM glucose. NNC77-0074 produced a concentration-dependent stimulation of insulin secretion. Half-maximal (EC(50)) stimulation was observed at 24 microM and at maximally stimulatory concentrations insulin release was doubled. The stimulatory action of NNC77-0074 on insulin secretion was not associated with membrane depolarisation or a change in the activity of ATP-sensitive K(+) channels. Using capacitance measurements, we found that NNC77-0074 stimulated depolarisation-induced exocytosis 2.6-fold without affecting the whole-cell Ca(2+) current when applied via the extracellular medium. The concentration dependence of the stimulatory action was determined by intracellular application of NNC77-0074 through the recording pipette. NNC77-0074 stimulated exocytosis half-maximal at 44 nM and at maximally stimulatory concentrations the rate of exocytosis was increased twofold. NNC77-0074 stimulated depolarised-induced insulin secretion from islets exposed to diazoxide and high external KCl (EC(50)=0.45 microM). The stimulatory action of NNC77-0074 was dependent on protein kinase C activity. NNC77-0074 potently inhibited glucagon secretion from rat islets (EC(50)=11 nM). This was not associated with a change in spontaneous electrical activity and ATP-sensitive K(+) channel activity but resulted from a reduction of the rate of Ca(2+)-dependent exocytosis in single rat alpha-cells (EC(50)=9 nM). Inhibition of exocytosis by NNC77-0074 was pertussis toxin-sensitive and mediated by activation of the protein phosphatase calcineurin. In rat somatotrophs, PC12 cells and mouse cortical neurons NNC77-0074 did not stimulate Ca(2+)-evoked exocytosis, whereas the other imidazoline compounds phentolamine and efaroxan produced 2.5-fold stimulation of exocytosis. Our data suggest that the imidazoline compound NNC77-0074 constitutes a novel class of antidiabetic compounds that stimulates glucose-dependent insulin release while inhibiting glucagon secretion. These actions are exclusively exerted by modulation of exocytosis of the insulin- and glucagon-containing granules.

TidsskriftEuropean Journal of Pharmacology
Udgave nummer1-2
Sider (fra-til)213-21
Antal sider9
StatusUdgivet - 11 apr. 2003
Udgivet eksterntJa


Dyk ned i forskningsemnerne om 'Imidazoline NNC77-0074 stimulates insulin secretion and inhibits glucagon release by control of Ca(2+)-dependent exocytosis in pancreatic alpha- and beta-cells'. Sammen danner de et unikt fingeraftryk.