TY - JOUR
T1 - IL-1 receptor antagonism and muscle gene expression in patients with type 2 diabetes
AU - Berchtold, Lukas A
AU - Larsen, Claus M
AU - Vaag, Allan
AU - Faulenbach, Mirjam
AU - Workman, Christopher T
AU - Kruhøffer, Mogens
AU - Donath, Marc
AU - Mandrup-Poulsen, Thomas
PY - 2009/6
Y1 - 2009/6
N2 - BACKGROUND: We have previously reported that systemic blockade of IL-1beta in patients with type 2 diabetes with anakinra (a recombinant human interleukin-1-receptor antagonist, IL-1Ra), lowered glycated hemoglobin improved beta-cell function and reduced circulating levels of IL-6 and CRP (7). To investigate the effects of IL-1Ra in insulin-sensitive tissue, gene expression levels in skeletal muscle from type 2 diabetic patients treated with IL-1Ra were analysed.METHODS: Gene expression profiles in vastus lateralis muscle biopsies from five obese patients (BMI >27) were determined before and after 13 weeks of treatment with IL-1Ra (anakinra) using Affymetrix U133Plus2.0 GeneChips. Microarray data were normalized and analysed independently using four different algorithms; RMA, GCRMA, dChip and GCOS. Hypothesis tests were applied to the microarray data for each gene, and protein network analysis was used to identify biological networks/pathways affected by the treatment. Gene expression levels for candidate genes (COL1A1, CDKN1C, HSP70, HLA-A, IL-1 and IL-6) were determined by qRT-PCR in muscles of placebo- (n = 12) and anakinra-treated patients (n = 11).RESULTS: The concordance of the variations of the transcripts identified as significantly regulated after IL-1Ra treatment was low. No significantly altered expression levels could be demonstrated after false discovery rate correction. The protein interaction network did not reveal any altered networks/pathways. None of the candidate genes, quantified by qRT-PCR, were significantly altered when comparing the number of transcripts before and after treatment for each individual. conclusion: Treatment with IL-1Ra did not significantly affect gene expression levels in skeletal muscle in this limited and selected sample of obese patients with type 2 diabetes. Larger studies might confirm the lack of effect of anakinra on muscle tissue gene expression.
AB - BACKGROUND: We have previously reported that systemic blockade of IL-1beta in patients with type 2 diabetes with anakinra (a recombinant human interleukin-1-receptor antagonist, IL-1Ra), lowered glycated hemoglobin improved beta-cell function and reduced circulating levels of IL-6 and CRP (7). To investigate the effects of IL-1Ra in insulin-sensitive tissue, gene expression levels in skeletal muscle from type 2 diabetic patients treated with IL-1Ra were analysed.METHODS: Gene expression profiles in vastus lateralis muscle biopsies from five obese patients (BMI >27) were determined before and after 13 weeks of treatment with IL-1Ra (anakinra) using Affymetrix U133Plus2.0 GeneChips. Microarray data were normalized and analysed independently using four different algorithms; RMA, GCRMA, dChip and GCOS. Hypothesis tests were applied to the microarray data for each gene, and protein network analysis was used to identify biological networks/pathways affected by the treatment. Gene expression levels for candidate genes (COL1A1, CDKN1C, HSP70, HLA-A, IL-1 and IL-6) were determined by qRT-PCR in muscles of placebo- (n = 12) and anakinra-treated patients (n = 11).RESULTS: The concordance of the variations of the transcripts identified as significantly regulated after IL-1Ra treatment was low. No significantly altered expression levels could be demonstrated after false discovery rate correction. The protein interaction network did not reveal any altered networks/pathways. None of the candidate genes, quantified by qRT-PCR, were significantly altered when comparing the number of transcripts before and after treatment for each individual. conclusion: Treatment with IL-1Ra did not significantly affect gene expression levels in skeletal muscle in this limited and selected sample of obese patients with type 2 diabetes. Larger studies might confirm the lack of effect of anakinra on muscle tissue gene expression.
KW - Adult
KW - Diabetes Mellitus, Type 2/genetics
KW - Double-Blind Method
KW - Female
KW - Gene Expression Profiling
KW - Gene Expression Regulation/drug effects
KW - Humans
KW - Interleukin 1 Receptor Antagonist Protein/pharmacology
KW - Interleukin-1beta/antagonists & inhibitors
KW - Interleukin-6/blood
KW - Male
KW - Middle Aged
KW - Muscle Proteins/biosynthesis
KW - Obesity/genetics
KW - Oligonucleotide Array Sequence Analysis
KW - Quadriceps Muscle/drug effects
KW - Reverse Transcriptase Polymerase Chain Reaction
KW - Stress, Physiological/drug effects
KW - Transcription, Genetic/drug effects
U2 - 10.1684/ecn.2009.0152
DO - 10.1684/ecn.2009.0152
M3 - Journal article
C2 - 19541594
SN - 1952-4005
VL - 20
SP - 81
EP - 87
JO - European Cytokine Network (Online)
JF - European Cytokine Network (Online)
IS - 2
ER -