TY - JOUR
T1 - Identification of Cellular Voids in the Human Otic Capsule
AU - Hansen, Lars Juul
AU - Bloch, Sune Land
AU - Sørensen, Mads Sølvsten
N1 - © 2021. Association for Research in Otolaryngology.
PY - 2022
Y1 - 2022
N2 - The otic capsule consists of dense highly mineralized compact bone. Inner ear osteoprotegerin (OPG) effectively inhibits perilabyrinthine remodeling and otic capsular bone turnover is very low compared to other bone. Consequently, degenerative changes like dead osteocytes and microcracks accumulate around the inner ear. Osteocytes are connected via canaliculi and need a certain connectivity to sustain life. Consequently, stochastic osteocyte apoptosis may disrupt the osteocytic network in unsustainable patterns leading to widespread cell death. When studying bulk-stained undecalcified human temporal bone, large clusters of dead osteocytes have been observed. Such "cellular voids" may disrupt the perilabyrinthine OPG mediated remodeling inhibition possibly leading to local remodeling. In the common ear disease otosclerosis pathological bone remodeling foci are found exclusively in the otic capsule. We believe the pathogenesis of otosclerosis is linked to the unique bony dynamics of perilabyrinthine bone and cellular voids may represent a starting point for otosclerotic remodeling. This study aims to identify and characterize cellular voids of the human otic capsule. This would allow future cellular void quantification and comparison of void and otosclerotic distribution to further elucidate the yet unknown pathogenesis of otosclerosis.
AB - The otic capsule consists of dense highly mineralized compact bone. Inner ear osteoprotegerin (OPG) effectively inhibits perilabyrinthine remodeling and otic capsular bone turnover is very low compared to other bone. Consequently, degenerative changes like dead osteocytes and microcracks accumulate around the inner ear. Osteocytes are connected via canaliculi and need a certain connectivity to sustain life. Consequently, stochastic osteocyte apoptosis may disrupt the osteocytic network in unsustainable patterns leading to widespread cell death. When studying bulk-stained undecalcified human temporal bone, large clusters of dead osteocytes have been observed. Such "cellular voids" may disrupt the perilabyrinthine OPG mediated remodeling inhibition possibly leading to local remodeling. In the common ear disease otosclerosis pathological bone remodeling foci are found exclusively in the otic capsule. We believe the pathogenesis of otosclerosis is linked to the unique bony dynamics of perilabyrinthine bone and cellular voids may represent a starting point for otosclerotic remodeling. This study aims to identify and characterize cellular voids of the human otic capsule. This would allow future cellular void quantification and comparison of void and otosclerotic distribution to further elucidate the yet unknown pathogenesis of otosclerosis.
UR - http://www.scopus.com/inward/record.url?scp=85113181115&partnerID=8YFLogxK
U2 - 10.1007/s10162-021-00810-6
DO - 10.1007/s10162-021-00810-6
M3 - Journal article
C2 - 34415468
SN - 1525-3961
VL - 22
SP - 591
EP - 599
JO - Journal of the Association for Research in Otolaryngology : JARO
JF - Journal of the Association for Research in Otolaryngology : JARO
IS - 5
ER -