Abstract
Lactate is shuttled between organs, as demonstrated in the Cori cycle. Although the brain releases lactate at rest, during physical exercise there is a cerebral uptake of lactate. Here, we evaluated the cerebral lactate uptake and release in hypoxia, during exercise and when the two interventions were combined. We measured cerebral lactate turnover via a tracer dilution method ([1-(13)C]lactate), using arterial to right internal jugular venous differences in 9 healthy individuals (5 males and 4 females), at rest and during 30 min of submaximal exercise in normoxia and hypoxia (F(i)o(2) 10%, arterial oxygen saturation 72±10%, mean±SD). Whole-body lactate turnover increased 3.5-fold and 9-fold at two workloads in normoxia and 18-fold during exercise in hypoxia. Although middle cerebral artery mean flow velocity increased during exercise in hypoxia, calculated cerebral mitochondrial oxygen tension decreased by 13 mmHg (P
Originalsprog | Engelsk |
---|---|
Tidsskrift | F A S E B Journal |
Sider (fra-til) | 3012-20 |
ISSN | 0892-6638 |
DOI | |
Status | Udgivet - 2012 |