Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Glucagon-like peptide-1 receptor regulation of basal dopamine transporter activity is species-dependent

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Multidisciplinær håndtering af svær jernforgiftning som følge af suicidalforsøg

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. High-Dose Glucagon Has Hemodynamic Effects Regardless of Cardiac Beta-Adrenoceptor Blockade: A Randomized Clinical Trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Gut Mucosal Gene Expression and Metabolic Changes After Roux-en-Y Gastric Bypass Surgery

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

INTRODUCTION: A solid body of preclinical evidence shows that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate the effects of substance use disorder related behaviors. The mechanisms underlying these effects remain elusive. In the present study, we hypothesized that GLP-1R activation modulates dopaminetransporter (DAT) and thus dopamine (DA) homeostasis in striatum. This was evaluated in three different experiments: two preclinical and one clinical.

METHODS: Rat striatal DA uptake, DA clearance and DAT cell surface expression was assessed following GLP-1 (7-36)-amide exposure in vitro. DA uptake in mice was assesed ex vivo following systemic treatment with the GLP-1R agonist exenatide. In addition, DA uptake was measured in GLP-1R knockout mice and compared with DA-uptake in wild type mice. In healthy humans, changes in DAT availability was assessed during infusion of exenatide measured by single-photon emission computed tomography imaging.

RESULTS: In rats, GLP-1 (7-36)-amide increased DA uptake, DA clearance and DAT cell surface expression in striatum. In mice, exenatide did not change striatal DA uptake. In GLP-1R knockout mice, DA uptake was similar to what was measured in wildtype mice. In humans, systemic infusion of exenatide did not result in acute changes in striatal DAT availability.

CONCLUSIONS: The GLP-1R agonist-induced modulation of striatal DAT activity in vitro in rats could not be replicated ex vivo in mice and in vivo in humans. Therefore, the underlying mechanisms of action for the GLP-1R agonists-induced efficacy in varios addiction-like behavioural models still remain.

OriginalsprogEngelsk
Artikelnummer104772
TidsskriftNeurochemistry International
Vol/bind138
Sider (fra-til)104772
ISSN0197-0186
DOI
StatusUdgivet - 1 sep. 2020

Bibliografisk note

Copyright © 2020 Elsevier Ltd. All rights reserved.

ID: 60286956