TY - JOUR
T1 - GIP(3-30)NH2 - a tool for the study of GIP physiology
AU - Lynggaard, Mads Bank
AU - Gasbjerg, Lærke Smidt
AU - Christensen, Mikkel Bring
AU - Knop, Filip Krag
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12
Y1 - 2020/12
N2 - Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone impacting glucose, lipid and bone metabolism through the GIP receptor (GIPR). The GIP system has key species differences complicating the translation of findings from rodent to human physiology. Furthermore, the effects of endogenous GIP in humans have been difficult to tease out due to the lack of a suitable GIPR antagonist. The naturally occurring GIP(3-30)NH2 has turned out to constitute a safe and efficacious GIPR antagonist for rodent and human use. To study GIP physiology, it is recommended to use the species-specific GIP(3-30)NH2 peptide sequence, and for human intravenous infusions, an antagonist:agonist ratio of a minimum of 600 with a 20min infusion time before the intervention of interest is recommended. Several studies using GIP(3-30)NH2 are coming, hopefully providing new insights into the physiology of GIP, the pathophysiologic involvement of GIP in several diseases and the therapeutic potential of the GIPR.
AB - Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone impacting glucose, lipid and bone metabolism through the GIP receptor (GIPR). The GIP system has key species differences complicating the translation of findings from rodent to human physiology. Furthermore, the effects of endogenous GIP in humans have been difficult to tease out due to the lack of a suitable GIPR antagonist. The naturally occurring GIP(3-30)NH2 has turned out to constitute a safe and efficacious GIPR antagonist for rodent and human use. To study GIP physiology, it is recommended to use the species-specific GIP(3-30)NH2 peptide sequence, and for human intravenous infusions, an antagonist:agonist ratio of a minimum of 600 with a 20min infusion time before the intervention of interest is recommended. Several studies using GIP(3-30)NH2 are coming, hopefully providing new insights into the physiology of GIP, the pathophysiologic involvement of GIP in several diseases and the therapeutic potential of the GIPR.
UR - http://www.scopus.com/inward/record.url?scp=85092131027&partnerID=8YFLogxK
U2 - 10.1016/j.coph.2020.08.011
DO - 10.1016/j.coph.2020.08.011
M3 - Review
C2 - 33053504
SN - 1471-4892
VL - 55
SP - 31
EP - 40
JO - Current Opinion in Pharmacology
JF - Current Opinion in Pharmacology
ER -