Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Geodesic atlas-based labeling of anatomical trees: Application and evaluation on airways extracted from CT

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Classification of Volumetric Images Using Multi-Instance Learning and Extreme value Theorem

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Bag-of-frequencies: a descriptor of pulmonary nodules in computed tomography images

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Attenuation correction for the HRRT PET-scanner using transmission scatter correction and total variation regularization

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. List-mode PET motion correction using markerless head tracking: proof-of-concept with scans of human subject

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Motion tracking for medical imaging: a nonvisible structured light tracking approach

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Learning to quantify emphysema extent: What labels do we need?

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Increased respiratory morbidity in individuals with interstitial lung abnormalities

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Classification of Volumetric Images Using Multi-Instance Learning and Extreme value Theorem

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Chest x-ray findings in tuberculosis patients identified by passive and active case finding: A retrospective study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Observer variability for Lung-RADS categorisation of lung cancer screening CTs: impact on patient management

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

We present a fast and robust atlas-based algorithm for labeling airway trees, using geodesic distances in a geometric tree-space. Possible branch label configurations for an unlabeled airway tree are evaluated using distances to a training set of labeled airway trees. In tree-space, airway tree topology and geometry change continuously, giving a natural automatic handling of anatomical differences and noise. A hierarchical approach makes the algorithm efficient, assigning labels from the trachea and downwards. Only the airway centerline tree is used, which is relatively unaffected by pathology. The algorithm is evaluated on 80 segmented airway trees from 40 subjects at two time points, labeled by 3 medical experts each, testing accuracy, reproducibility and robustness in patients with Chronic Obstructive Pulmonary Disease (COPD). The accuracy of the algorithm is statistically similar to that of the experts and not significantly correlated with COPD severity. The reproducibility of the algorithm is significantly better than that of the experts, and negatively correlated with COPD severity. Evaluation of the algorithm on a longitudinal set of 8724 trees from a lung cancer screening trial shows that the algorithm can be used in large scale studies with high reproducibility, and that the negative correlation of reproducibility with COPD severity can be explained by missing branches, for instance due to segmentation problems in COPD patients. We conclude that the algorithm is robust to COPD severity given equally complete airway trees, and comparable in performance to that of experts in pulmonary medicine, emphasizing the suitability of the labeling algorithm for clinical use.

OriginalsprogEngelsk
TidsskriftIEEE Transactions on Medical Imaging
Vol/bind34
Udgave nummer6
Sider (fra-til)1212-26
ISSN0278-0062
DOI
StatusUdgivet - 2015

ID: 45000904