Genome-wide meta-analyses of restless legs syndrome yield insights into genetic architecture, disease biology and risk prediction

Barbara Schormair*, Chen Zhao, Steven Bell, Maria Didriksen, Muhammad S Nawaz, Nathalie Schandra, Ambra Stefani, Birgit Högl, Yves Dauvilliers, Cornelius G Bachmann, David Kemlink, Karel Sonka, Walter Paulus, Claudia Trenkwalder, Wolfgang H Oertel, Magdolna Hornyak, Maris Teder-Laving, Andres Metspalu, Georgios M Hadjigeorgiou, Olli PoloIngo Fietze, Owen A Ross, Zbigniew K Wszolek, Abubaker Ibrahim, Melanie Bergmann, Volker Kittke, Philip Harrer, Joseph Dowsett, Sofiene Chenini, Sisse Rye Ostrowski, Erik Sørensen, Christian Erikstrup, Ole B Pedersen, Mie Topholm Bruun, Kaspar R Nielsen, Adam S Butterworth, Nicole Soranzo, Willem H Ouwehand, David J Roberts, John Danesh, Brendan Burchell, Nicholas A Furlotte, Priyanka Nandakumar, Christopher J Earley, William G Ondo, Lan Xiong, Alex Desautels, Markus Perola, Pavel Vodicka, Henrik Ullum, 23andMe Research Team

*Corresponding author af dette arbejde
9 Citationer (Scopus)

Abstract

Restless legs syndrome (RLS) affects up to 10% of older adults. Their healthcare is impeded by delayed diagnosis and insufficient treatment. To advance disease prediction and find new entry points for therapy, we performed meta-analyses of genome-wide association studies in 116,647 individuals with RLS (cases) and 1,546,466 controls of European ancestry. The pooled analysis increased the number of risk loci eightfold to 164, including three on chromosome X. Sex-specific meta-analyses revealed largely overlapping genetic predispositions of the sexes (rg = 0.96). Locus annotation prioritized druggable genes such as glutamate receptors 1 and 4, and Mendelian randomization indicated RLS as a causal risk factor for diabetes. Machine learning approaches combining genetic and nongenetic information performed best in risk prediction (area under the curve (AUC) = 0.82-0.91). In summary, we identified targets for drug development and repurposing, prioritized potential causal relationships between RLS and relevant comorbidities and risk factors for follow-up and provided evidence that nonlinear interactions are likely relevant to RLS risk prediction.

OriginalsprogEngelsk
TidsskriftNature Genetics
Vol/bind56
Udgave nummer6
Sider (fra-til)1090-1099
Antal sider10
ISSN1061-4036
DOI
StatusUdgivet - jun. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Genome-wide meta-analyses of restless legs syndrome yield insights into genetic architecture, disease biology and risk prediction'. Sammen danner de et unikt fingeraftryk.

Citationsformater