TY - JOUR
T1 - GDNF/GFRA1 signaling contributes to chemo- and radioresistance in glioblastoma
AU - Avenel, Inès C N
AU - Ewald, Jesper D
AU - Ariey-Bonnet, Jérémy
AU - Kristensen, Ida H
AU - Petterson, Stine A
AU - Thesbjerg, Martin N
AU - Burton, Mark
AU - Thomassen, Mads
AU - Wennerberg, Krister
AU - Michaelsen, Signe R
AU - Kristensen, Bjarne W
N1 - © 2024. The Author(s).
PY - 2024/7/31
Y1 - 2024/7/31
N2 - Glioblastoma is the most common primary brain tumor in adults, characterized by an inherent aggressivity and resistance to treatment leading to poor prognoses. While some resistance mechanisms have been elucidated, a deeper understanding of these mechanisms is needed to increase therapeutic efficacy. In this study we first discovered glial-cell derived neurotrophic factor (GDNF) to be upregulated in patient-derived glioblastoma spheroid cultures after chemotherapeutic temozolomide treatment, through RNA-Seq experiments. Therefore, we investigated the role of the GDNF/GDNF receptor alpha 1 (GFRA1) signaling pathway as a resistance mechanism to chemotherapy with temozolomide and lomustine, as well as irradiation using patient-derived glioblastoma spheroid cultures. With qPCR experiments we showed a consistent upregulation of GDNF and its primary receptor GFRA1 following all three lines of treatment. Moreover, CRISPR/Cas9 knock-outs of GDNF in two patient-derived models sensitized these cells to chemotherapy treatment, but not radiotherapy. The increased sensitivity was completely reversed by the addition of exogeneous GDNF, confirming the key role of this factor in chemoresistance. Finally, a CRISPR KO of GFRA1 demonstrated a similar increased sensitivity to temozolomide and lomustine treatment, as well as radiotherapy. Together, our findings support the role of the GDNF/GFRA1 signaling pathway in glioblastoma chemo and radioresistance.
AB - Glioblastoma is the most common primary brain tumor in adults, characterized by an inherent aggressivity and resistance to treatment leading to poor prognoses. While some resistance mechanisms have been elucidated, a deeper understanding of these mechanisms is needed to increase therapeutic efficacy. In this study we first discovered glial-cell derived neurotrophic factor (GDNF) to be upregulated in patient-derived glioblastoma spheroid cultures after chemotherapeutic temozolomide treatment, through RNA-Seq experiments. Therefore, we investigated the role of the GDNF/GDNF receptor alpha 1 (GFRA1) signaling pathway as a resistance mechanism to chemotherapy with temozolomide and lomustine, as well as irradiation using patient-derived glioblastoma spheroid cultures. With qPCR experiments we showed a consistent upregulation of GDNF and its primary receptor GFRA1 following all three lines of treatment. Moreover, CRISPR/Cas9 knock-outs of GDNF in two patient-derived models sensitized these cells to chemotherapy treatment, but not radiotherapy. The increased sensitivity was completely reversed by the addition of exogeneous GDNF, confirming the key role of this factor in chemoresistance. Finally, a CRISPR KO of GFRA1 demonstrated a similar increased sensitivity to temozolomide and lomustine treatment, as well as radiotherapy. Together, our findings support the role of the GDNF/GFRA1 signaling pathway in glioblastoma chemo and radioresistance.
KW - Glioblastoma/metabolism
KW - Humans
KW - Glial Cell Line-Derived Neurotrophic Factor/metabolism
KW - Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism
KW - Drug Resistance, Neoplasm/genetics
KW - Signal Transduction
KW - Temozolomide/pharmacology
KW - Radiation Tolerance/genetics
KW - Brain Neoplasms/genetics
KW - Cell Line, Tumor
KW - Gene Expression Regulation, Neoplastic/drug effects
KW - Lomustine/pharmacology
KW - Spheroids, Cellular/metabolism
UR - http://www.scopus.com/inward/record.url?scp=85200208963&partnerID=8YFLogxK
M3 - Journal article
C2 - 39085346
SN - 2045-2322
VL - 14
SP - 17639
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 17639
ER -