TY - JOUR
T1 - Evaluation of itch and pain induced by bovine adrenal medulla (BAM)8–22, a new human model of non-histaminergic itch
AU - Aliotta, Giulia Erica
AU - Lo Vecchio, Silvia
AU - Elberling, Jesper
AU - Arendt-Nielsen, Lars
N1 - Publisher Copyright:
© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
PY - 2022/9
Y1 - 2022/9
N2 - Chronic itch is a socioeconomic burden with limited management options. Non-histaminergic itch, involved in problematic pathological itch conditions, is transmitted by a subgroup of polymodal C-fibres. Cowhage is traditionally used for studying experimentally induced non-histaminergic itch in humans but encounters some limitations. The present study, therefore, aims to design a new human, experimental model of non-histaminergic itch based on the application of bovine adrenal medulla (BAM)8–22, an endogenous peptide that activates the MrgprX1 receptor. Twenty-two healthy subjects were recruited. Different concentrations (0.5, 1 and 2 mg/ml) of BAM8-22 solution and vehicle, applied by a single skin prick test (SPT), were tested in the first session. In the second session, the BAM8-22 solution (1 mg/ml) was applied by different number of SPTs (1, 5 and 25) and by heat-inactivated cowhage spicules coated with BAM8-22. Provoked itch and pain intensities were monitored for 9 min, followed by the measurement of superficial blood perfusion (SBP) and mechanical and thermal sensitivities. BAM8-22 induced itch at the concentration of 1, 2 mg/ml (p < 0.05) and with the significantly highest intensity when applied through BAM8-22 spicules (p < 0.001). No concomitant pain sensation or increased SBP was observed. SBP increased only in the 25 SPTs area probably due to microtrauma from the multiple skin penetrations. Mechanical and thermal sensitivities were not affected by any of the applications. BAM8-22 applied through heat-inactivated spicules was the most efficient method to induce itch (without pain or changes in SBP and mechanical and thermal sensitivities) suggesting BAM8-22 as a novel non-histaminergic, human, experimental itch model.
AB - Chronic itch is a socioeconomic burden with limited management options. Non-histaminergic itch, involved in problematic pathological itch conditions, is transmitted by a subgroup of polymodal C-fibres. Cowhage is traditionally used for studying experimentally induced non-histaminergic itch in humans but encounters some limitations. The present study, therefore, aims to design a new human, experimental model of non-histaminergic itch based on the application of bovine adrenal medulla (BAM)8–22, an endogenous peptide that activates the MrgprX1 receptor. Twenty-two healthy subjects were recruited. Different concentrations (0.5, 1 and 2 mg/ml) of BAM8-22 solution and vehicle, applied by a single skin prick test (SPT), were tested in the first session. In the second session, the BAM8-22 solution (1 mg/ml) was applied by different number of SPTs (1, 5 and 25) and by heat-inactivated cowhage spicules coated with BAM8-22. Provoked itch and pain intensities were monitored for 9 min, followed by the measurement of superficial blood perfusion (SBP) and mechanical and thermal sensitivities. BAM8-22 induced itch at the concentration of 1, 2 mg/ml (p < 0.05) and with the significantly highest intensity when applied through BAM8-22 spicules (p < 0.001). No concomitant pain sensation or increased SBP was observed. SBP increased only in the 25 SPTs area probably due to microtrauma from the multiple skin penetrations. Mechanical and thermal sensitivities were not affected by any of the applications. BAM8-22 applied through heat-inactivated spicules was the most efficient method to induce itch (without pain or changes in SBP and mechanical and thermal sensitivities) suggesting BAM8-22 as a novel non-histaminergic, human, experimental itch model.
KW - BAM8-22
KW - cowhage spicules
KW - itch
KW - non-histaminergic itch
KW - pain
UR - http://www.scopus.com/inward/record.url?scp=85131080472&partnerID=8YFLogxK
U2 - 10.1111/exd.14611
DO - 10.1111/exd.14611
M3 - Journal article
C2 - 35587729
AN - SCOPUS:85131080472
SN - 0906-6705
VL - 31
SP - 1402
EP - 1410
JO - Experimental Dermatology
JF - Experimental Dermatology
IS - 9
ER -