Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Electric field simulations for transcranial brain stimulation using FEM: an efficient implementation and error analysis

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Auditory stimulus-response modeling with a Match-Mismatch task

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Transducer modeling for accurate acoustic simulations of transcranial focused ultrasound stimulation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Frequency of different subtypes of cervical dystonia: a prospective multicenter study according to Col-Cap concept

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Multichannel anodal tDCS over the left dorsolateral prefrontal cortex in a paediatric population

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Interindividual variability of electric fields during transcranial temporal interference stimulation (tTIS)

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Ergodicity-breaking reveals time optimal decision making in humans

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Estimation of individually induced e-field strength during transcranial electric stimulation using the head circumference

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

OBJECTIVE: Transcranial magnetic stimulation (TMS) and transcranial electric stimulation (TES) modulate brain activity non-invasively by generating electric fields either by electromagnetic induction or by injecting currents via skin electrodes. Numerical simulations based on anatomically detailed head models of the TMS and TES electric fields can help us to understand and optimize the spatial stimulation pattern in the brain. However, most realistic simulations are still slow, and the role of anatomical fidelity on simulation accuracy has not been evaluated in detail so far. APPROACH: We present and validate a new implementation of the finite element method (FEM) for TMS and TES that is based on modern algorithms and libraries. We also evaluate the convergence of the simulations and estimate errors stemming from numerical and modelling aspects. MAIN RESULTS: Comparisons with analytical solutions for spherical phantoms validate our new FEM implementation, which is three to six times faster than previous implementations. The convergence results suggest that accurately capturing the tissue geometry in addition to choosing a sufficiently accurate numerical method is of fundamental importance for accurate simulations. SIGNIFICANCE: The new implementation allows for a substantial increase in computational efficiency of FEM TMS and TES simulations. This is especially relevant for applications such as the systematic assessment of model uncertainty and the optimization of multi-electrode TES montages. The results of our systematic error analysis allow the user to select the best tradeoff between model resolution and simulation speed for a specific application. The new FEM code is openly available as a part of our open-source software SimNIBS 3.0.

OriginalsprogEngelsk
Artikelnummer066032
TidsskriftJournal of Neural Engineering
Vol/bind16
Udgave nummer6
Antal sider27
ISSN1435-1463
DOI
StatusUdgivet - 6 nov. 2019

Bibliografisk note

© 2019 IOP Publishing Ltd.

ID: 57916708