Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Efficacy and Mode of Action of Mesenchymal Stem Cells in Non-Ischemic Dilated Cardiomyopathy: A Systematic Review

Publikation: Bidrag til tidsskriftReviewpeer review

DOI

  1. The Phenotypic Spectrum of PRRT2-Associated Paroxysmal Neurologic Disorders in Childhood

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Identification of Novel Native Autoantigens in Rheumatoid Arthritis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Impaired coronary flow velocity reserve is associated with cardiovascular risk factors but not with angina symptoms

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Safety and feasibility of mesenchymal stem cell therapy in patients with aqueous deficient dry eye disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Vaskulær endotelial vækstfaktor-terapi ved iskæmisk hjertesygdom.

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Non-ischemic dilated cardiomyopathy (NIDCM) constitutes one of the most common causes to non-ischemic heart failure. Despite treatment, the disease often progresses, causing severe morbidity and mortality, making novel treatment strategies necessary. Due to the regenerative actions of mesenchymal stem cells (MSCs), they have been proposed as a treatment for NIDCM. This systematic review aims to evaluate efficacy and mode of action (MoA) of MSC-based therapies in NIDCM. A systematic literature search was conducted in Medline (Pubmed) and Embase. A total of 27 studies were included (3 clinical trials and 24 preclinical studies). MSCs from different tissues and routes of delivery were reported, with bone marrow-derived MSCs and direct intramyocardial injections being the most frequent. All included clinical trials and 22 preclinical trials reported an improvement in cardiac function following MSC treatment. Furthermore, preclinical studies demonstrated alterations in tissue structure, gene, and protein expression patterns, primarily related to fibrosis and angiogenesis. Consequently, MSC treatment can improve cardiac function in NIDCM patients. The MoA underlying this effect involves anti-fibrosis, angiogenesis, immunomodulation, and anti-apoptosis, though these processes seem to be interdependent. These encouraging results calls for larger confirmatory clinical studies, as well as preclinical studies utilizing unbiased investigation of the potential MoA.

OriginalsprogEngelsk
TidsskriftBiomedicines
Vol/bind8
Udgave nummer12
ISSN2227-9059
DOI
StatusUdgivet - 5 dec. 2020

ID: 61995273