Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Effects of metformin, rosiglitazone and insulin on bone metabolism in patients with type 2 diabetes

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Preserved postprandial suppression of bone turnover markers, despite increased fasting levels, in postmenopausal women

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. The role of endogenous GIP and GLP-1 in postprandial bone homeostasis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. High serum FSH is not a risk factor for low bone mineral density in infertile men

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Consumption of nutrients and insulin resistance suppress markers of bone turnover in subjects with abdominal obesity

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Bone resorption is unchanged by liraglutide in type 2 diabetes patients: A randomised controlled trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Metabolic bone disease in patients with epilepsy and the use of antiepileptic drugs - Insight from a Danish cross-sectional study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Tore Bjerregaard Stage
  • Mette-Marie Hougaard Christensen
  • Niklas Rye Jørgensen
  • Henning Beck-Nielsen
  • Kim Brøsen
  • Jeppe Gram
  • Morten Frost
Vis graf over relationer

BACKGROUND: Fracture risk is increased in individuals with type 2 diabetes (T2D). The pathophysiological mechanisms accentuating fracture risk in T2D are convoluted, incorporating factors such as hyperglycaemia, insulinopenia, and antidiabetic drugs. The objectives of this study were to assess whether different insulin regimens, metformin and rosiglitazone influence bone metabolism. We explored if the concentration of metformin and rosiglitazone in blood or improved glycaemic control altered bone turnover.

METHODS: Two-year clinical trial designed to investigate effects of antidiabetic treatment in 371 T2D patients. Participants were randomized to short or long-acting human insulin (non-blinded) and then further randomized to metformin + placebo, rosiglitazone + placebo, metformin + rosiglitazone or placebo + placebo (blinded). Fasting bone turnover markers (BTM) representing bone resorption (CTX) and formation (PINP) including HbA1c were measured at baseline and after 3, 12 and 24 months. Trough steady-state plasma concentrations of metformin and rosiglitazone were measured after 3, 6 and 9 months of treatment. Associations between treatments and BTMs during the follow-up of the trial were analysed in mixed-effects models that included adjustments for age, gender, BMI, renal function and repeated measures of HbA1c.

RESULTS: BTMs increased from baseline to month 12 and remained higher at month 24, with CTX and PINP increasing 28.5% and 23.0% (all: p < 0.001), respectively. Allocation of insulin regimens was not associated with different levels of BTMs. Metformin and metformin + rosiglitazone but not rosiglitazone alone were associated with lower bone formation (PINP). Neither metformin nor rosiglitazone plasma concentrations was associated with BTMs. HbA1c was inversely associated with CTX but not P1NP.

CONCLUSIONS: The choice of insulin treatment is not influencing BTMs, metformin treatment may decrease BTMs, and improvement of glycaemic control may influence bone resorption activity.

OriginalsprogEngelsk
TidsskriftBone
Vol/bind112
Sider (fra-til)35-41
Antal sider7
ISSN8756-3282
DOI
StatusUdgivet - jul. 2018

ID: 55801798