TY - JOUR
T1 - Effects of an Oral Contraceptive on Dynamic Brain States and Network Modularity in a Serial Single-Subject Study
AU - Jensen, Kristian Høj Reveles
AU - McCulloch, Drummond E-Wen
AU - Olsen, Anders Stevnhoved
AU - Bruzzone, Silvia Elisabetta Portis
AU - Larsen, Søren Vinther
AU - Fisher, Patrick MacDonald
AU - Frokjaer, Vibe Gedsoe
N1 - Copyright © 2022 Jensen, McCulloch, Olsen, Bruzzone, Larsen, Fisher and Frokjaer.
PY - 2022/6/14
Y1 - 2022/6/14
N2 - Hormonal contraceptive drugs are used by adolescent and adult women worldwide. Increasing evidence from human neuroimaging research indicates that oral contraceptives can alter regional functional brain connectivity and brain chemistry. However, questions remain regarding static whole-brain and dynamic network-wise functional connectivity changes. A healthy woman (23 years old) was scanned every day over 30 consecutive days during a naturally occurring menstrual cycle and again a year later while using a combined hormonal contraceptive. Here we calculated graph theory-derived, whole-brain, network-level measures (modularity and system segregation) and global brain connectivity (characteristic path length) as well as dynamic functional brain connectivity using Leading Eigenvector Dynamic Analysis and diametrical clustering. These metrics were calculated for each scan session during the serial sampling periods to compare metrics between the subject's natural and contraceptive cycles. Modularity, system segregation, and characteristic path length were statistically significantly higher across the natural compared to contraceptive cycle scans. We also observed a shift in the prevalence of two discrete brain states when using the contraceptive. Our results suggest a more network-structured brain connectivity architecture during the natural cycle, whereas oral contraceptive use is associated with a generally increased connectivity structure evidenced by lower characteristic path length. The results of this repeated, single-subject analysis allude to the possible effects of oral contraceptives on brain-wide connectivity, which should be evaluated in a cohort to resolve the extent to which these effects generalize across the population and the possible impact of a year-long period between conditions.
AB - Hormonal contraceptive drugs are used by adolescent and adult women worldwide. Increasing evidence from human neuroimaging research indicates that oral contraceptives can alter regional functional brain connectivity and brain chemistry. However, questions remain regarding static whole-brain and dynamic network-wise functional connectivity changes. A healthy woman (23 years old) was scanned every day over 30 consecutive days during a naturally occurring menstrual cycle and again a year later while using a combined hormonal contraceptive. Here we calculated graph theory-derived, whole-brain, network-level measures (modularity and system segregation) and global brain connectivity (characteristic path length) as well as dynamic functional brain connectivity using Leading Eigenvector Dynamic Analysis and diametrical clustering. These metrics were calculated for each scan session during the serial sampling periods to compare metrics between the subject's natural and contraceptive cycles. Modularity, system segregation, and characteristic path length were statistically significantly higher across the natural compared to contraceptive cycle scans. We also observed a shift in the prevalence of two discrete brain states when using the contraceptive. Our results suggest a more network-structured brain connectivity architecture during the natural cycle, whereas oral contraceptive use is associated with a generally increased connectivity structure evidenced by lower characteristic path length. The results of this repeated, single-subject analysis allude to the possible effects of oral contraceptives on brain-wide connectivity, which should be evaluated in a cohort to resolve the extent to which these effects generalize across the population and the possible impact of a year-long period between conditions.
KW - brain modularity
KW - dynamic functional connectivity (dFC)
KW - functional connectivity (FC)
KW - functional magnetic resonance imaging (fMRI)
KW - hormonal contraceptive
KW - menstrual cycle
KW - oral contraceptive (OC)
KW - steroid hormones
UR - http://www.scopus.com/inward/record.url?scp=85133545789&partnerID=8YFLogxK
U2 - 10.3389/fnins.2022.855582
DO - 10.3389/fnins.2022.855582
M3 - Journal article
C2 - 35774557
SN - 1662-4548
VL - 16
SP - 1
EP - 10
JO - Frontiers in Neuroscience
JF - Frontiers in Neuroscience
M1 - 855582
ER -