TY - JOUR
T1 - Effect of astrocyte-targeted production of IL-6 on traumatic brain injury and its impact on the cortical transcriptome
AU - Quintana, Albert
AU - Molinero, Amalia
AU - Borup, Rehannah
AU - Nielsen, Finn Cilius
AU - Campbell, Iain L
AU - Penkowa, Milena
AU - Hidalgo, Juan
PY - 2008/2/1
Y1 - 2008/2/1
N2 - Interleukin-6 (IL-6) is one of the key players in the response of the brain cortex to injury. We have described previously that astrocyte-driven production of IL-6 (GFAP-IL6) in transgenic mice, although causing spontaneous neuroinflammation and long term damage, is beneficial after an acute (freeze) injury in the cortex, increasing healing and decreasing oxidative stress and apoptosis. To determine the transcriptional basis for these responses here we analyzed the global gene expression profile of the cortex, at 0 (unlesioned), 1 or 4 days post lesion (dpl), in both GFAP-IL6 mice and their control littermates. GFAP-IL6 mice showed an increase in genes associated with the inflammatory response both at 1 dpl (Iftm1, Endod1) and 4 dpl (Gfap, C4b), decreased expression of proapoptotic genes (i.e. Gadd45b, Clic4, p21) as well as reduced expression of genes involved in the control of oxidative stress (Atf4). Furthermore, the presence of IL-6 altered the expression of genes involved in hemostasis (Vwf), cell migration and proliferation (Cap2), and synaptic activity (Vamp2). All these changes in gene expression could underlie the phenotype of the GFAP-IL6 mice after injury, but many other possible factors were also identified in this study, highlighting the utility of this approach for deciphering new pathways orchestrated by IL-6.
AB - Interleukin-6 (IL-6) is one of the key players in the response of the brain cortex to injury. We have described previously that astrocyte-driven production of IL-6 (GFAP-IL6) in transgenic mice, although causing spontaneous neuroinflammation and long term damage, is beneficial after an acute (freeze) injury in the cortex, increasing healing and decreasing oxidative stress and apoptosis. To determine the transcriptional basis for these responses here we analyzed the global gene expression profile of the cortex, at 0 (unlesioned), 1 or 4 days post lesion (dpl), in both GFAP-IL6 mice and their control littermates. GFAP-IL6 mice showed an increase in genes associated with the inflammatory response both at 1 dpl (Iftm1, Endod1) and 4 dpl (Gfap, C4b), decreased expression of proapoptotic genes (i.e. Gadd45b, Clic4, p21) as well as reduced expression of genes involved in the control of oxidative stress (Atf4). Furthermore, the presence of IL-6 altered the expression of genes involved in hemostasis (Vwf), cell migration and proliferation (Cap2), and synaptic activity (Vamp2). All these changes in gene expression could underlie the phenotype of the GFAP-IL6 mice after injury, but many other possible factors were also identified in this study, highlighting the utility of this approach for deciphering new pathways orchestrated by IL-6.
KW - Animals
KW - Apoptosis/genetics
KW - Astrocytes/immunology
KW - Brain Injuries/genetics
KW - Cell Movement/genetics
KW - Cell Proliferation
KW - Encephalitis/genetics
KW - Gene Expression Profiling
KW - Gene Expression Regulation/genetics
KW - Glial Fibrillary Acidic Protein/genetics
KW - Hemostasis/genetics
KW - Interleukin-6/genetics
KW - Male
KW - Mice
KW - Mice, Knockout
KW - Recombinant Fusion Proteins/genetics
KW - Signal Transduction/genetics
KW - Synaptic Transmission/genetics
KW - Up-Regulation/genetics
U2 - 10.1002/dneu.20584
DO - 10.1002/dneu.20584
M3 - Journal article
C2 - 18000830
SN - 1932-8451
VL - 68
SP - 195
EP - 208
JO - Developmental neurobiology
JF - Developmental neurobiology
IS - 2
ER -