Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Disproportionately increased 24-h energy expenditure and fat oxidation in young men with low birth weight during a high-fat overfeeding challenge

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{b6f8c0fcc7ea4b7185ffd1f9ed05f8b7,
title = "Disproportionately increased 24-h energy expenditure and fat oxidation in young men with low birth weight during a high-fat overfeeding challenge",
abstract = "BACKGROUND: Low birth weight (LBW) associates with increased risk of developing type 2 diabetes. LBW individuals exhibit disproportionately reduced peripheral insulin action and increased fat oxidation after a 5-day high-fat overfeeding (HFO) challenge. Furthermore, LBW men exhibit increased nocturnal fat oxidation during energy balance and low energy expenditure (EE) during fasting. We hypothesized that short-term HFO could further unmask key defects of whole-body energy metabolism in LBW men.METHODS: Eighteen LBW (2717 ± 268 g) and 26 normal birth weight (NBW) (3893 ± 207 g) healthy young men were included in a 5-day HFO (60 E {\%} fat, +50 {\%} calories) study. The 24-h EE, respiratory quotient and substrate oxidation rates were assessed by indirect calorimetry using respiratory chambers.RESULTS: After adjusting for body composition, the LBW subjects displayed increased nighttime EE (P = 0.02) compared with NBW controls during HFO. Nighttime glucose oxidation rate was decreased (P = 0.06, adjusted P = 0.05), while both adjusted 24-h (P = 0.07) and nighttime (P = 0.02) fat oxidation rate was elevated in LBW subjects. The relative contribution of fat oxidation to EE was increased in LBW compared with NBW men during the entire 24-h period (P = 0.06) and during nighttime (P = 0.03).CONCLUSIONS: We suggest that disproportionally enhanced fat oxidation in LBW individuals during short-term HFO represents a compensatory response to reduced subcutaneous adipose tissue expandability and storage capacity. The extent to which this mechanism may lead to, or be replaced by insulin resistance, ectopic fat accumulation and/or glucose intolerance during long-term HFO in LBW needs further studies.",
author = "Charlotte Br{\o}ns and Lille{\o}re, {S{\o}ren K} and Arne Astrup and Allan Vaag",
year = "2016",
doi = "10.1007/s00394-015-1018-7",
language = "English",
volume = "55",
pages = "2045--52",
journal = "European Journal of Nutrition",
issn = "1436-6207",
publisher = "Dr. Dietrich/Steinkopff Verlag",
number = "6",

}

RIS

TY - JOUR

T1 - Disproportionately increased 24-h energy expenditure and fat oxidation in young men with low birth weight during a high-fat overfeeding challenge

AU - Brøns, Charlotte

AU - Lilleøre, Søren K

AU - Astrup, Arne

AU - Vaag, Allan

PY - 2016

Y1 - 2016

N2 - BACKGROUND: Low birth weight (LBW) associates with increased risk of developing type 2 diabetes. LBW individuals exhibit disproportionately reduced peripheral insulin action and increased fat oxidation after a 5-day high-fat overfeeding (HFO) challenge. Furthermore, LBW men exhibit increased nocturnal fat oxidation during energy balance and low energy expenditure (EE) during fasting. We hypothesized that short-term HFO could further unmask key defects of whole-body energy metabolism in LBW men.METHODS: Eighteen LBW (2717 ± 268 g) and 26 normal birth weight (NBW) (3893 ± 207 g) healthy young men were included in a 5-day HFO (60 E % fat, +50 % calories) study. The 24-h EE, respiratory quotient and substrate oxidation rates were assessed by indirect calorimetry using respiratory chambers.RESULTS: After adjusting for body composition, the LBW subjects displayed increased nighttime EE (P = 0.02) compared with NBW controls during HFO. Nighttime glucose oxidation rate was decreased (P = 0.06, adjusted P = 0.05), while both adjusted 24-h (P = 0.07) and nighttime (P = 0.02) fat oxidation rate was elevated in LBW subjects. The relative contribution of fat oxidation to EE was increased in LBW compared with NBW men during the entire 24-h period (P = 0.06) and during nighttime (P = 0.03).CONCLUSIONS: We suggest that disproportionally enhanced fat oxidation in LBW individuals during short-term HFO represents a compensatory response to reduced subcutaneous adipose tissue expandability and storage capacity. The extent to which this mechanism may lead to, or be replaced by insulin resistance, ectopic fat accumulation and/or glucose intolerance during long-term HFO in LBW needs further studies.

AB - BACKGROUND: Low birth weight (LBW) associates with increased risk of developing type 2 diabetes. LBW individuals exhibit disproportionately reduced peripheral insulin action and increased fat oxidation after a 5-day high-fat overfeeding (HFO) challenge. Furthermore, LBW men exhibit increased nocturnal fat oxidation during energy balance and low energy expenditure (EE) during fasting. We hypothesized that short-term HFO could further unmask key defects of whole-body energy metabolism in LBW men.METHODS: Eighteen LBW (2717 ± 268 g) and 26 normal birth weight (NBW) (3893 ± 207 g) healthy young men were included in a 5-day HFO (60 E % fat, +50 % calories) study. The 24-h EE, respiratory quotient and substrate oxidation rates were assessed by indirect calorimetry using respiratory chambers.RESULTS: After adjusting for body composition, the LBW subjects displayed increased nighttime EE (P = 0.02) compared with NBW controls during HFO. Nighttime glucose oxidation rate was decreased (P = 0.06, adjusted P = 0.05), while both adjusted 24-h (P = 0.07) and nighttime (P = 0.02) fat oxidation rate was elevated in LBW subjects. The relative contribution of fat oxidation to EE was increased in LBW compared with NBW men during the entire 24-h period (P = 0.06) and during nighttime (P = 0.03).CONCLUSIONS: We suggest that disproportionally enhanced fat oxidation in LBW individuals during short-term HFO represents a compensatory response to reduced subcutaneous adipose tissue expandability and storage capacity. The extent to which this mechanism may lead to, or be replaced by insulin resistance, ectopic fat accumulation and/or glucose intolerance during long-term HFO in LBW needs further studies.

U2 - 10.1007/s00394-015-1018-7

DO - 10.1007/s00394-015-1018-7

M3 - Journal article

VL - 55

SP - 2045

EP - 2052

JO - European Journal of Nutrition

JF - European Journal of Nutrition

SN - 1436-6207

IS - 6

ER -

ID: 46004011