Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models (vol 41, pg 399, 2023): Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models (Nature Biotechnology, (2023), 41, 3, (399-408), 10.1038/s41587-022-01520-x)
Rosa Lundbye Allesøe, Agnete Troen Lundgaard, Ricardo Hernández Medina, Alejandro Aguayo-Orozco, Joachim Johansen, Jakob Nybo Nissen, Caroline Brorsson, Gianluca Mazzoni, Lili Niu, Jorge Hernansanz Biel, Cristina Leal Rodríguez, Valentas Brasas, Henry Webel, Michael Eriksen Benros, Anders Gorm Pedersen, Piotr Jaroslaw Chmura, Ulrik Plesner Jacobsen, Andrea Mari, Robert Koivula, Anubha MahajanAna Vinuela, Juan Fernandez Tajes, Sapna Sharma, Mark Haid, Mun-Gwan Hong, Petra B Musholt, Federico De Masi, Josef Vogt, Helle Krogh Pedersen, Valborg Gudmundsdottir, Angus Jones, Gwen Kennedy, Jimmy Bell, E Louise Thomas, Gary Frost, Henrik Thomsen, Elizaveta Hansen, Tue Haldor Hansen, Henrik Vestergaard, Mirthe Muilwijk, Marieke T Blom, Leen M 't Hart, Francois Pattou, Violeta Raverdy, Soren Brage, Martin Ridderstråle, Oluf Pedersen, Torben Hansen, Simon Rasmussen, Søren Brunak, IMI-DIRECT consortium
Dyk ned i forskningsemnerne om 'Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models (vol 41, pg 399, 2023): Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models (Nature Biotechnology, (2023), 41, 3, (399-408), 10.1038/s41587-022-01520-x)'. Sammen danner de et unikt fingeraftryk.