Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Dimerization of endogenous MT1-MMP is a regulatory step in the activation of the 72-kDa gelatinase MMP-2 on fibroblasts and fibrosarcoma cells

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Structural models of the human copper P-type ATPases ATP7A and ATP7B

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Collagen density regulates the activity of tumor-infiltrating T cells

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Feasibility of single-cell analysis of model cancer and foetal cells in blood after isolation by cell picking

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Immune regulation by fibroblasts in tissue injury depends on uPARAP-mediated uptake of collectins

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. uPARAP/Endo180 receptor is a gatekeeper of VEGFR-2/VEGFR-3 heterodimerisation during pathological lymphangiogenesis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer
The secreted gelatinase matrix metalloprotease-2 (MMP-2) and the membrane-anchored matrix metalloprotease MT1-MMP (MMP-14), are central players in pericellular proteolysis in extracellular matrix degradation. In addition to possessing a direct collagenolytic and gelatinolytic activity, these enzymes take part in a cascade pathway in which MT1-MMP activates the MMP-2 proenzyme. This reaction occurs in an interplay with the matrix metalloprotease inhibitor, TIMP-2, and the proposed mechanism involves two molecules of MT1-MMP in complex with one TIMP-2 molecule. We provide positive evidence that proMMP-2 activation is governed by dimerization of MT1-MMP on the surface of fibroblasts and fibrosarcoma cells. Even in the absence of transfection and overexpression, dimerization of MT1-MMP markedly stimulated the formation of active MMP-2 products. The effect demonstrated here was brought about by a monoclonal antibody that binds specifically to MT1-MMP as shown by immunofluorescence experiments. The antibody has no effect on the catalytic activity. The effect on proMMP-2 activation involves MT1-MMP dimerization because it requires the divalent monoclonal antibody, with no effect obtained with monovalent Fab fragments. Since only a negligible level of proMMP-2 activation was obtained with MT1-MMP-expressing cells in the absence of dimerization, our results identify the dimerization event as a critical level of proteolytic cascade regulation.
OriginalsprogEngelsk
TidsskriftBiological Chemistry
Vol/bind389
Udgave nummer7
Sider (fra-til)943-53
Antal sider11
ISSN1431-6730
DOI
StatusUdgivet - jul. 2008

ID: 39988635