Deep residual networks for automatic sleep stage classification of raw polysomnographic waveforms

Alexander N Olesen, Poul Jennum, Paul Peppard, Emmanuel Mignot, Helge B D Sorensen

24 Citationer (Scopus)

Abstract

We have developed an automatic sleep stage classification algorithm based on deep residual neural networks and raw polysomnogram signals. Briefly, the raw data is passed through 50 convolutional layers before subsequent classification into one of five sleep stages. Three model configurations were trained on 1850 polysomnogram recordings and subsequently tested on 230 independent recordings. Our best performing model yielded an accuracy of 84.1% and a Cohen's kappa of 0.746, improving on previous reported results by other groups also using only raw polysomnogram data. Most errors were made on non-REM stage 1 and 3 decisions, errors likely resulting from the definition of these stages. Further testing on independent cohorts is needed to verify performance for clinical use.

OriginalsprogEngelsk
TidsskriftI E E E Engineering in Medicine and Biology Society. Conference Proceedings
Vol/bind2018
Sider (fra-til)1-4
Antal sider4
ISSN1557-170X
DOI
StatusUdgivet - 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Deep residual networks for automatic sleep stage classification of raw polysomnographic waveforms'. Sammen danner de et unikt fingeraftryk.

Citationsformater