Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Deep learning-based integration of genetics with registry data for stratification of schizophrenia and depression

Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

DOI

  1. Mutations in BCOR, a co-repressor of CRX/OTX2, are associated with early-onset retinal degeneration

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

  2. H3K9 dimethylation safeguards cancer cells against activation of the interferon pathway

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

  3. Systematic dissection of transcriptional regulatory networks by genome-scale and single-cell CRISPR screens

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

  4. Ketogenic diet reduces alcohol withdrawal symptoms in humans and alcohol intake in rodents

    Publikation: Bidrag til tidsskriftTidsskriftartikelpeer review

Vis graf over relationer

Currently, psychiatric diagnoses are, in contrast to most other medical fields, based on subjective symptoms and observable signs and call for new and improved diagnostics to provide the most optimal care. On the basis of a deep learning approach, we performed unsupervised patient stratification of 19,636 patients with depression [major depressive disorder (MDD)] and/or schizophrenia (SCZ) and 22,467 population controls from the iPSYCH2012 case cohort. We integrated data of disorder severity, history of mental disorders and disease comorbidities, genetics, and medical birth data. From this, we stratified the individuals in six and seven unique clusters for MDD and SCZ, respectively. When censoring data until diagnosis, we could predict MDD clusters with areas under the curve (AUCs) of 0.54 to 0.80 and SCZ clusters with AUCs of 0.71 to 0.86. Overall cases and controls could be predicted with an AUC of 0.81, illustrating the utility of data-driven subgrouping in psychiatry.

OriginalsprogEngelsk
TidsskriftScience Advances
Vol/bind8
Udgave nummer26
Sider (fra-til)eabi7293
DOI
StatusUdgivet - jul. 2022

ID: 79545534