Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital

Deep Learning Algorithm for the Confirmation of Mucosal Healing in Crohn's Disease, Based on Confocal Laser Endomicroscopy Images

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


  1. Effects of implementation of a national fast track clinical pathway for hepatocellular carcinoma in Western Denmark

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Magnetic Nanoparticles for Hepatocellular Carcinoma Diagnosis and Therapy

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Romanian guidelines on the diagnosis and treatment of exocrine pancreatic insufficiency

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Reply. When to stop non-selective beta-blockers: the window hypothesis in clinical practice

    Publikation: Bidrag til tidsskriftKommentar/debatForskningpeer review

  5. CD133/CD166/Ki-67 triple immunofluorescence assessment for putative cancer stem cells in colon carcinoma

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

BACKGROUND AND AIMS: Mucosal healing (MH) is associated with a stable course of Crohn's disease (CD) which can be assessed by confocal laser endomicroscopy (CLE). To minimize the operator's errors and automate assessment of CLE images, we used a deep learning (DL) model for image analysis. We hypothesized that DL combined with convolutional neural networks (CNNs) and long short-term memory (LSTM) can distinguish between normal and inflamed colonic mucosa from CLE images.

METHODS: The study included 54 patients, 32 with known active CD, and 22 control patients (18 CD patients with MH and four normal mucosa patients with no history of inflammatory bowel diseases). We designed and trained a deep convolutional neural network to detect active CD using 6,205 endomicroscopy images classified as active CD inflammation (3,672 images) and control mucosal healing or no inflammation (2,533 images). CLE imaging was performed on four colorectal areas and the terminal ileum. Gold standard was represented by the histopathological evaluation. The dataset was randomly split in two distinct training and testing datasets: 80% data from each patient were used for training and the remaining 20% for testing. The training dataset consists of 2,892 images with inflammation and 2,189 control images. The testing dataset consists of 780 images with inflammation and 344 control images of the colon. We used a CNN-LSTM model with four convolution layers and one LSTM layer for automatic detection of MH and CD diagnosis from CLE images.

RESULTS: CLE investigation reveals normal colonic mucosa with round crypts and inflamed mucosa with irregular crypts and tortuous and dilated blood vessels. Our method obtained a 95.3% test accuracy with a specificity of 92.78% and a sensitivity of 94.6%, with an area under each receiver operating characteristic curves of 0.98.

CONCLUSIONS: Using machine learning algorithms on CLE images can successfully differentiate between inflammation and normal ileocolonic mucosa and can be used as a computer aided diagnosis for CD. Future clinical studies with a larger patient spectrum will validate our results and improve the CNN-SSTM model.

TidsskriftJournal of Gastrointestinal and Liver Diseases
Udgave nummer1
Sider (fra-til)59-65
Antal sider7
StatusUdgivet - 12 mar. 2021

Bibliografisk note

Funding Information:
Acknowledgements: The research has received funding from Norwegian Financial Mechanism 2014-2021 under the project RO-NO-2019-0138, 19/2020 “Improving Cancer Diagnostics in Flexible Endoscopy using Artificial Intelligence and Medical Robotics” IDEAR, Contract No. 19/2020and from Competitiveness Operational Program 2014-2020 under the project P_37_357 “Improving the research and development capacity for imaging and advanced technology for minimal invasive medical procedures (iMTECH)” grant, Contract No. 65/08.09.2016, SMIS-Code: 103633.

ID: 64229587