TY - JOUR
T1 - Deep Learning Algorithm for the Confirmation of Mucosal Healing in Crohn's Disease, Based on Confocal Laser Endomicroscopy Images
AU - Udristoiu, Anca Loredana
AU - Stefanescu, Daniela
AU - Gruionu, Gabriel
AU - Gruionu, Lucian Gheorghe
AU - Iacob, Andreea Valentina
AU - Karstensen, John Gasdal
AU - Vilman, Peter
AU - Saftoiu, Adrian
N1 - Publisher Copyright:
© 2021, Romanian Society of Gastroenterology. All rights reserved.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/3/12
Y1 - 2021/3/12
N2 - BACKGROUND AND AIMS: Mucosal healing (MH) is associated with a stable course of Crohn's disease (CD) which can be assessed by confocal laser endomicroscopy (CLE). To minimize the operator's errors and automate assessment of CLE images, we used a deep learning (DL) model for image analysis. We hypothesized that DL combined with convolutional neural networks (CNNs) and long short-term memory (LSTM) can distinguish between normal and inflamed colonic mucosa from CLE images.METHODS: The study included 54 patients, 32 with known active CD, and 22 control patients (18 CD patients with MH and four normal mucosa patients with no history of inflammatory bowel diseases). We designed and trained a deep convolutional neural network to detect active CD using 6,205 endomicroscopy images classified as active CD inflammation (3,672 images) and control mucosal healing or no inflammation (2,533 images). CLE imaging was performed on four colorectal areas and the terminal ileum. Gold standard was represented by the histopathological evaluation. The dataset was randomly split in two distinct training and testing datasets: 80% data from each patient were used for training and the remaining 20% for testing. The training dataset consists of 2,892 images with inflammation and 2,189 control images. The testing dataset consists of 780 images with inflammation and 344 control images of the colon. We used a CNN-LSTM model with four convolution layers and one LSTM layer for automatic detection of MH and CD diagnosis from CLE images.RESULTS: CLE investigation reveals normal colonic mucosa with round crypts and inflamed mucosa with irregular crypts and tortuous and dilated blood vessels. Our method obtained a 95.3% test accuracy with a specificity of 92.78% and a sensitivity of 94.6%, with an area under each receiver operating characteristic curves of 0.98.CONCLUSIONS: Using machine learning algorithms on CLE images can successfully differentiate between inflammation and normal ileocolonic mucosa and can be used as a computer aided diagnosis for CD. Future clinical studies with a larger patient spectrum will validate our results and improve the CNN-SSTM model.
AB - BACKGROUND AND AIMS: Mucosal healing (MH) is associated with a stable course of Crohn's disease (CD) which can be assessed by confocal laser endomicroscopy (CLE). To minimize the operator's errors and automate assessment of CLE images, we used a deep learning (DL) model for image analysis. We hypothesized that DL combined with convolutional neural networks (CNNs) and long short-term memory (LSTM) can distinguish between normal and inflamed colonic mucosa from CLE images.METHODS: The study included 54 patients, 32 with known active CD, and 22 control patients (18 CD patients with MH and four normal mucosa patients with no history of inflammatory bowel diseases). We designed and trained a deep convolutional neural network to detect active CD using 6,205 endomicroscopy images classified as active CD inflammation (3,672 images) and control mucosal healing or no inflammation (2,533 images). CLE imaging was performed on four colorectal areas and the terminal ileum. Gold standard was represented by the histopathological evaluation. The dataset was randomly split in two distinct training and testing datasets: 80% data from each patient were used for training and the remaining 20% for testing. The training dataset consists of 2,892 images with inflammation and 2,189 control images. The testing dataset consists of 780 images with inflammation and 344 control images of the colon. We used a CNN-LSTM model with four convolution layers and one LSTM layer for automatic detection of MH and CD diagnosis from CLE images.RESULTS: CLE investigation reveals normal colonic mucosa with round crypts and inflamed mucosa with irregular crypts and tortuous and dilated blood vessels. Our method obtained a 95.3% test accuracy with a specificity of 92.78% and a sensitivity of 94.6%, with an area under each receiver operating characteristic curves of 0.98.CONCLUSIONS: Using machine learning algorithms on CLE images can successfully differentiate between inflammation and normal ileocolonic mucosa and can be used as a computer aided diagnosis for CD. Future clinical studies with a larger patient spectrum will validate our results and improve the CNN-SSTM model.
KW - Confocal laser endomicroscopy
KW - Convolutional neural network
KW - Crohn’s disease
KW - Deep learning
KW - Inflammatory bowel disease
UR - http://www.scopus.com/inward/record.url?scp=85102912205&partnerID=8YFLogxK
U2 - 10.15403/jgld-3212
DO - 10.15403/jgld-3212
M3 - Journal article
C2 - 33723558
SN - 1841-8724
VL - 30
SP - 59
EP - 65
JO - Journal of Gastrointestinal and Liver Diseases
JF - Journal of Gastrointestinal and Liver Diseases
IS - 1
ER -