Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
E-pub ahead of print

Data-driven separation of MRI signal components for tissue characterization

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Multi-site benchmarking of clinical 13C RF coils at 3T

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Dynamic nuclear polarization and optimal control spatial-selective (13)C MRI and MRS

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Planar quadrature coil design using shielded-loop resonators.

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Ergodicity-breaking reveals time optimal decision making in humans

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Dimethyl Fumarate Treatment in Patients With Primary Progressive Multiple Sclerosis: A Randomized, Controlled Trial

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Concurrent TMS-fMRI for causal network perturbation and proof of target engagement

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

Vis graf over relationer

PURPOSE: MRI can be utilized for quantitative characterization of tissue. To assess e.g. water fractions or diffusion coefficients for compartments in the brain, a decomposition of the signal is necessary. Imposing standard models carries the risk of estimating biased parameters if model assumptions are violated. This work introduces a data-driven multicomponent analysis, the monotonous slope non-negative matrix factorization (msNMF), tailored to extract data features expected in MR signals.

METHODS: The msNMF was implemented by extending the standard NMF with monotonicity constraints on the signal profiles and their first derivatives. The method was validated using simulated data, and subsequently applied to both ex vivo DWI data and in vivo relaxometry data. Reproducibility of the method was tested using the latter.

RESULTS: The msNMF recovered the multi-exponential signals in the simulated data and showed superiority to standard NMF (based on the explained variance, area under the ROC curve, and coefficient of variation). Diffusion components extracted from the DWI data reflected the cell density of the underlying tissue. The relaxometry analysis resulted in estimates of edema water fractions (EWF) highly correlated with published results, and demonstrated acceptable reproducibility.

CONCLUSION: The msNMF can robustly separate MR signals into components with relation to the underlying tissue composition, and may potentially be useful for e.g. tumor tissue characterization.

OriginalsprogEngelsk
Artikelnummer107103
TidsskriftJournal of magnetic resonance (San Diego, Calif. : 1997)
Vol/bind333
ISSN1090-7807
DOI
StatusE-pub ahead of print - 5 nov. 2021

Bibliografisk note

Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

ID: 69263368