Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
E-pub ahead of print

Data-Driven Model Building for Life Course Epidemiology

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Levels of and Changes in Childhood Body Mass Index in Relation to Risk of Atrial Fibrillation and Atrial Flutter in Adulthood

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Infertility in a Cohort of Male Danish Firefighters: A Register-Based Study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. ASSOCIATIONS OF OCCUPANT MOTOR VEHICLE CRASH WITH FUTURE HEART FAILURE AND ISCHEMIC STROKE IN OLDER ADULTS

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Effect estimates in randomized trials and observational studies: comparing apples with apples

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Mortality in women treated with assisted reproductive technology treatment - addressing the healthy patient effect

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Treatment patterns in patients with treatment-resistant depression in Danish patients with major depressive disorder

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Lifetime psychiatric hospital diagnoses among 8,412 Danish men registered in an outpatient alcohol clinic

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Treatment-resistant depression and risk of all-cause mortality and suicidality in Danish patients with major depression

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Are Advances in Survival among the Oldest Old Seen across the Spectrum of Health and Functioning?

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Life course epidemiology is useful for describing and analyzing complex etiological mechanisms for disease development, but existing statistical methods are essentially confirmatory, as they rely on a priori model specification. This limits the scope of causal inquiries that can be made, since these methods are mostly suited to examine well-known hypotheses that do not question our established view of health, which may lead to confirmation bias. We propose an exploratory alternative. Instead of specifyinga life course model prior to data analysis, our method infers the life course model directly from the data. Our proposed method extends the well-known PC algorithm (named after its authors, Peter and Clark) for causal discovery and it facilitates including temporal information for inferring a model from observational data. The extended algorithm is called temporal PC. The obtained life course model can afterwards be perused for interesting causal hypotheses. Our method complements classical confirmatory methods, and guides researchers in expanding their models in new directions. We showcase the method on a dataset encompassing almost 3000 Danish men followed from birth until age 65. Using this dataset, we infer life course models for the role of socio-economic and health-related factors on development of depression.

OriginalsprogEngelsk
TidsskriftAmerican Journal of Epidemiology
ISSN0002-9262
DOI
StatusE-pub ahead of print - 29 mar. 2021

ID: 64864764