Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Data integration for prediction of weight loss in randomized controlled dietary trials

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Dokumenter

DOI

  1. Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Infants with congenital heart defects have reduced brain volumes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Effect of liraglutide on expression of inflammatory genes in type 2 diabetes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Genetic regulation of spermine oxidase activity and cancer risk: a Mendelian randomization study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. The trans-ancestral genomic architecture of glycemic traits

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Genetic markers of abdominal obesity and weight loss after gastric bypass surgery

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Trans-ethnic gut microbiota signatures of type 2 diabetes in Denmark and India

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Whole blood co-expression modules associate with metabolic traits and type 2 diabetes: an IMI-DIRECT study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Rikke Linnemann Nielsen
  • Marianne Helenius
  • Sara L Garcia
  • Henrik M Roager
  • Derya Aytan-Aktug
  • Lea Benedicte Skov Hansen
  • Mads Vendelbo Lind
  • Josef K Vogt
  • Marlene Danner Dalgaard
  • Martin I Bahl
  • Cecilia Bang Jensen
  • Rasa Muktupavela
  • Christina Warinner
  • Vincent Aaskov
  • Rikke Gøbel
  • Mette Kristensen
  • Hanne Frøkiær
  • Morten H Sparholt
  • Anders F Christensen
  • Henrik Vestergaard
  • Torben Hansen
  • Karsten Kristiansen
  • Susanne Brix
  • Thomas Nordahl Petersen
  • Lotte Lauritzen
  • Tine Rask Licht
  • Oluf Pedersen
  • Ramneek Gupta
Vis graf over relationer

Diet is an important component in weight management strategies, but heterogeneous responses to the same diet make it difficult to foresee individual weight-loss outcomes. Omics-based technologies now allow for analysis of multiple factors for weight loss prediction at the individual level. Here, we classify weight loss responders (N = 106) and non-responders (N = 97) of overweight non-diabetic middle-aged Danes to two earlier reported dietary trials over 8 weeks. Random forest models integrated gut microbiome, host genetics, urine metabolome, measures of physiology and anthropometrics measured prior to any dietary intervention to identify individual predisposing features of weight loss in combination with diet. The most predictive models for weight loss included features of diet, gut bacterial species and urine metabolites (ROC-AUC: 0.84-0.88) compared to a diet-only model (ROC-AUC: 0.62). A model ensemble integrating multi-omics identified 64% of the non-responders with 80% confidence. Such models will be useful to assist in selecting appropriate weight management strategies, as individual predisposition to diet response varies.

OriginalsprogEngelsk
TidsskriftScientific Reports
Vol/bind10
Udgave nummer1
Sider (fra-til)20103
ISSN2045-2322
DOI
StatusUdgivet - 18 nov. 2020

ID: 65388201