cRedAnno+: Annotation Exploitation In Self-Explanatory Lung Nodule Diagnosis

Jiahao Lu*, Chong Yin, Kenny Erleben, Michael Bachmann Nielsen, Sune Darkner

*Corresponding author af dette arbejde

Abstract

Recently, attempts have been made to reduce annotation requirements in feature-based self-explanatory models for lung nodule diagnosis. As a representative, cRedAnno achieves competitive performance with considerably reduced annotation needs by introducing self-supervised contrastive learning to do unsupervised feature extraction. However, it exhibits unstable performance under scarce annotation conditions. To improve the accuracy and robustness of cRedAnno, we propose an annotation exploitation mechanism by conducting semi-supervised active learning with sparse seeding and training quenching in the learned semantically meaningful reasoning space, to jointly utilise the extracted features, annotations, and unlabelled data. The proposed approach achieves comparable or even higher malignancy prediction accuracy with 10x fewer annotations, meanwhile showing better robustness and nodule attribute prediction accuracy under the condition of 1% annotations. Our complete code is open-source available: https://github.com/diku-dk/credanno.

OriginalsprogEngelsk
Titel2023 IEEE International Symposium on Biomedical Imaging, ISBI 2023
ForlagIEEE Computer Society Press
Publikationsdato2023
Sider1-5
ISBN (Elektronisk)9781665473583
DOI
StatusUdgivet - 2023
Begivenhed20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 - Cartagena, Colombia
Varighed: 18 apr. 202321 apr. 2023

Konference

Konference20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
Land/OmrådeColombia
ByCartagena
Periode18/04/202321/04/2023
SponsorFlywheel, Kitware, Siemens Healthineers AG, Cliniques Universitaires Saint-Luc (UCLouvain)
NavnProceedings - International Symposium on Biomedical Imaging
Vol/bind2023-April
ISSN1945-7928

Fingeraftryk

Dyk ned i forskningsemnerne om 'cRedAnno+: Annotation Exploitation In Self-Explanatory Lung Nodule Diagnosis'. Sammen danner de et unikt fingeraftryk.

Citationsformater