Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Computing Generalized Matrix Inverse on Spiking Neural Substrate

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Microstates as Disease and Progression Markers in Patients With Mild Cognitive Impairment

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. A Comparison of Regularization Methods in Forward and Backward Models for Auditory Attention Decoding

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. An in vivo Mouse Model to Investigate the Effect of Local Anesthetic Nanomedicines on Axonal Conduction and Excitability

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Deep Learning Based Attenuation Correction of PET/MRI in Pediatric Brain Tumor Patients: Evaluation in a Clinical Setting

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Rohit Shukla
  • Soroosh Khoram
  • Erik Jorgensen
  • Jing Li
  • Mikko Lipasti
  • Stephen Wright
Vis graf over relationer

Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

OriginalsprogEngelsk
TidsskriftFrontiers in Neuroscience
Vol/bind12
Sider (fra-til)115
ISSN1662-4548
DOI
StatusUdgivet - 2018

ID: 56431535