Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Complex Multi-Block Analysis Identifies New Immunologic and Genetic Disease Progression Patterns Associated with the Residual β-Cell Function 1 Year after Diagnosis of Type 1 Diabetes

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Novel functions of the luteinizing hormone/chorionic gonadotropin receptor in prostate cancer cells and patients

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Hepatitis C prevalence in Denmark in 2016-An updated estimate using multiple national registers

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Inflammation, non-endothelial dependent coronary microvascular function and diastolic function-Are they linked?

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Lipidomics of human adipose tissue reveals diversity between body areas

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. The Rac2 GTPase contributes to cathepsin H-mediated protection against cytokine-induced apoptosis in insulin-secreting cells

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Characterization of plasma lipidomics in adolescent subjects with increased risk for type 1 diabetes in the DiPiS cohort

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Long Noncoding RNAs in Diabetes and β-Cell Regulation

    Publikation: Bidrag til bog/antologi/rapportBidrag til bog/antologiForskningpeer review

  4. Systemic TNFα correlates with residual β-cell function in children and adolescents newly diagnosed with type 1 diabetes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer
The purpose of the present study is to explore the progression of type 1 diabetes (T1D) in Danish children 12 months after diagnosis using Latent Factor Modelling. We include three data blocks of dynamic paraclinical biomarkers, baseline clinical characteristics and genetic profiles of diabetes related SNPs in the analyses. This method identified a model explaining 21.6% of the total variation in the data set. The model consists of two components: (1) A pattern of declining residual β-cell function positively associated with young age, presence of diabetic ketoacidosis and long duration of disease symptoms (P = 0.0004), and with risk alleles of WFS1, CDKN2A/2B and RNLS (P = 0.006). (2) A second pattern of high ZnT8 autoantibody levels and low postprandial glucagon levels associated with risk alleles of IFIH1, TCF2, TAF5L, IL2RA and PTPN2 and protective alleles of ERBB3 gene (P = 0.0005). These results demonstrate that Latent Factor Modelling can identify associating patterns in clinical prospective data - future functional studies will be needed to clarify the relevance of these patterns.
OriginalsprogEngelsk
TidsskriftP L o S One
Vol/bind8
Udgave nummer6
Sider (fra-til)e64632
ISSN1932-6203
DOI
StatusUdgivet - 2013

ID: 38882870