Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Comparing cancer vs. normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Stage I-II nodular lymphocyte-predominant Hodgkin lymphoma: a multi-institutional study of adult patients by ILROG

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. ILROG emergency guidelines for radiation therapy of hematological malignancies during the COVID-19 pandemic

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Clonal hematopoiesis in elderly twins: concordance, discordance and mortality

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Skin colonization by circulating neoplastic clones in cutaneous T-cell lymphoma

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. The ASXL1-G643W variant accelerates the development of CEBPA mutant acute myeloid leukemia

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. The prognostic effect of smoking status on intensively treated acute myeloid leukaemia - A Danish nationwide cohort study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Myelodysplastic syndrome patient-derived xenografts: from no options to many

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Identification of the novel HLA allele, HLA-C*07:780, identified in a Danish woman

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer
Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells, and has not been efficient in identifying expression changes fundamental to disease etiology. Here we present a method that facilitates the comparison of any cancer sample to its nearest normal cellular counterpart using acute myeloid leukemia (AML) as a model. We first generated a gene expression-based landscape of the normal hematopoietic hierarchy using expression profiles from normal stem/progenitor cells and next mapped the AML patient samples to this landscape. This allowed us to identify the closest normal counterpart of individual AML samples and determine gene expression changes between cancer and normal. We find the cancer vs. normal method (CvN-method) to be superior to conventional methods in stratifying AML patients with aberrant-karyotype and in identifying common aberrant transcriptional programs with potential importance for AML etiology. Moreover, the CvN-method uncovered a novel poor-outcome subtype of normal-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN-method holds great potential as a tool for the analysis of gene expression profiles of cancer patients.
OriginalsprogEngelsk
TidsskriftBlood
Vol/bind123
Udgave nummer6
Sider (fra-til)894-904
ISSN0006-4971
DOI
StatusUdgivet - 2014

ID: 42185134