Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS)

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Auditory stimulus-response modeling with a Match-Mismatch task

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Transducer modeling for accurate acoustic simulations of transcranial focused ultrasound stimulation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Frequency of different subtypes of cervical dystonia: a prospective multicenter study according to Col-Cap concept

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Electric field simulations for transcranial brain stimulation using FEM: an efficient implementation and error analysis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Accurate TMS Head Modeling: Interfacing SimNIBS and BEM-FMM in a MATLAB-Based Module

    Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review

  4. Probing EEG activity in the targeted cortex after focal transcranial electrical stimulation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Objective. A study pertinent to the numerical modeling of cortical neurostimulation is conducted in an effort to compare the performance of the finite element method (FEM) and an original formulation of the boundary element fast multipole method (BEM-FMM) at matched computational performance metrics. Approach. We consider two problems: (i) a canonic multi-sphere geometry and an external magnetic-dipole excitation where the analytical solution is available and; (ii) a problem with realistic head models excited by a realistic coil geometry. In the first case, the FEM algorithm tested is a fast open-source getDP solver running within the SimNIBS 2.1.1 environment. In the second case, a high-end commercial FEM software package ANSYS Maxwell 3D is used. The BEM-FMM method runs in the MATLAB ® 2018a environment. Main results. In the first case, we observe that the BEM-FMM algorithm gives a smaller solution error for all mesh resolutions and runs significantly faster for high-resolution meshes when the number of triangular facets exceeds approximately 0.25 M. We present other relevant simulation results such as volumetric mesh generation times for the FEM, time necessary to compute the potential integrals for the BEM-FMM, and solution performance metrics for different hardware/operating system combinations. In the second case, we observe an excellent agreement for electric field distribution across different cranium compartments and, at the same time, a speed improvement of three orders of magnitude when the BEM-FMM algorithm used. Significance. This study may provide a justification for anticipated use of the BEM-FMM algorithm for high-resolution realistic transcranial magnetic stimulation scenarios.

OriginalsprogEngelsk
Artikelnummer024001
TidsskriftJournal of Neural Engineering
Vol/bind16
Udgave nummer2
Sider (fra-til)1-13
ISSN1435-1463
DOI
StatusUdgivet - apr. 2019

ID: 56118450