TY - JOUR
T1 - Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility
AU - Adel Fahmideh, Maral
AU - Lavebratt, Catharina
AU - Schüz, Joachim
AU - Röösli, Martin
AU - Tynes, Tore
AU - Grotzer, Michael A
AU - Johansen, Christoffer
AU - Kuehni, Claudia E
AU - Lannering, Birgitta
AU - Prochazka, Michaela
AU - Schmidt, Lisbeth Samsø
AU - Feychting, Maria
PY - 2016
Y1 - 2016
N2 - Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain tumors (PBTs) is limited. Therefore, we investigated the association between single nucleotide polymorphisms (SNPs), identified by candidate gene-association studies on adult brain tumors, and PBT risk.The study is based on the largest series of PBT cases to date. Saliva DNA from 245 cases and 489 controls, aged 7-19 years at diagnosis/reference date, was genotyped for 68 SNPs. Data were analyzed using unconditional logistic regression.The results showed EGFRrs730437 and EGFRrs11506105 may decrease susceptibility to PBTs, whereas ERCC1rs3212986 may increase risk of these tumors. Moreover, stratified analyses indicated CHAF1Ars243341, CHAF1Ars2992, and XRCC1rs25487 were associated with a decreased risk of astrocytoma subtype. Furthermore, an increased risk of non-astrocytoma subtype associated with EGFRrs9642393, EME1rs12450550, ATMrs170548, and GLTSCRrs1035938 as well as a decreased risk of this subtype associated with XRCC4rs7721416 and XRCC4rs2662242 were detected.This study indicates SNPs in EGFR, ERCC1, CHAF1A, XRCC1, EME1, ATM, GLTSCR1, and XRCC4 may be associated with the risk of PBTs. Therefore, cell cycle and DNA repair pathways variations associated with susceptibility to adult brain tumors also seem to be associated with PBT risk, suggesting pediatric and adult brain tumors might share similar etiological pathways.
AB - Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain tumors (PBTs) is limited. Therefore, we investigated the association between single nucleotide polymorphisms (SNPs), identified by candidate gene-association studies on adult brain tumors, and PBT risk.The study is based on the largest series of PBT cases to date. Saliva DNA from 245 cases and 489 controls, aged 7-19 years at diagnosis/reference date, was genotyped for 68 SNPs. Data were analyzed using unconditional logistic regression.The results showed EGFRrs730437 and EGFRrs11506105 may decrease susceptibility to PBTs, whereas ERCC1rs3212986 may increase risk of these tumors. Moreover, stratified analyses indicated CHAF1Ars243341, CHAF1Ars2992, and XRCC1rs25487 were associated with a decreased risk of astrocytoma subtype. Furthermore, an increased risk of non-astrocytoma subtype associated with EGFRrs9642393, EME1rs12450550, ATMrs170548, and GLTSCRrs1035938 as well as a decreased risk of this subtype associated with XRCC4rs7721416 and XRCC4rs2662242 were detected.This study indicates SNPs in EGFR, ERCC1, CHAF1A, XRCC1, EME1, ATM, GLTSCR1, and XRCC4 may be associated with the risk of PBTs. Therefore, cell cycle and DNA repair pathways variations associated with susceptibility to adult brain tumors also seem to be associated with PBT risk, suggesting pediatric and adult brain tumors might share similar etiological pathways.
U2 - 10.18632/oncotarget.11575
DO - 10.18632/oncotarget.11575
M3 - Journal article
C2 - 27613841
SN - 1949-2553
VL - 7
SP - 63640
EP - 63650
JO - Oncotarget
JF - Oncotarget
IS - 39
ER -