Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Classification of Volumetric Images Using Multi-Instance Learning and Extreme value Theorem

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Bag-of-frequencies: a descriptor of pulmonary nodules in computed tomography images

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Geodesic atlas-based labeling of anatomical trees: Application and evaluation on airways extracted from CT

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Attenuation correction for the HRRT PET-scanner using transmission scatter correction and total variation regularization

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. List-mode PET motion correction using markerless head tracking: proof-of-concept with scans of human subject

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Motion tracking for medical imaging: a nonvisible structured light tracking approach

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Assisted versus Manual Interpretation of Low-Dose CT Scans for Lung Cancer Screening: Impact on Lung-RADS Agreement

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Volumetric imaging is an essential diagnostic tool for medical practitioners. The use of popular techniques such as convolutional neural networks (CNN) for analysis of volumetric images is constrained by the availability of detailed (with local annotations) training data and GPU memory. In this paper, the volumetric image classification problem is posed as a multiinstance classification problem and a novel method is proposed to adaptively select positive instances from positive bags during the training phase. This method uses the extreme value theory to model the feature distribution of the images without a pathology and use it to identify positive instances of an imaged pathology. The experimental results, on three separate image classification tasks (i.e. classify retinal OCT images according to the presence or absence of fluid build-ups, emphysema detection in pulmonary 3D-CT images and detection of cancerous regions in 2D histopathology images) show that the proposed method produces classifiers that have similar performance to fully supervised methods and achieves the state of the art performance in all examined test cases.

OriginalsprogEngelsk
Artikelnummer8805413
TidsskriftIEEE Transactions on Medical Imaging
Vol/bind39
Udgave nummer4
Sider (fra-til)854 - 865
Antal sider12
ISSN0278-0062
DOI
StatusUdgivet - apr. 2020

ID: 60299448