Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Classification of social anhedonia using temporal and spatial network features from a social cognition fMRI task

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Multi-dimensional predictions of psychotic symptoms via machine learning

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Widespread higher fractional anisotropy associates to better cognitive functions in individuals at ultra-high risk for psychosis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Transcranial direct current stimulation over the sensory-motor regions inhibits gamma synchrony

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Trait Openness and serotonin 2A receptors in healthy volunteers: A positron emission tomography study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Functional and Structural Plasticity Co-express in a Left Premotor Region During Early Bimanual Skill Learning

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Discrete finger sequences are widely represented in human striatum

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Probing Context-Dependent Modulations of Ipsilateral Premotor-Motor Connectivity in Relapsing-Remitting Multiple Sclerosis

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

Previous studies have suggested that the degree of social anhedonia reflects the vulnerability for developing schizophrenia. However, only few studies have investigated how functional network changes are related to social anhedonia. The aim of this fMRI study was to classify subjects according to their degree of social anhedonia using supervised machine learning. More specifically, we extracted both spatial and temporal network features during a social cognition task from 70 subjects, and used support vector machines for classification. Since impairment in social cognition is well established in schizophrenia-spectrum disorders, the subjects performed a comic strip task designed to specifically probe theory of mind (ToM) and empathy processing. Features representing both temporal (time series) and network dynamics were extracted using task activation maps, seed region analysis, independent component analysis (ICA), and a newly developed multi-subject archetypal analysis (MSAA), which here aimed to further bridge aspects of both seed region analysis and decomposition by incorporating a spotlight approach.We found significant classification of subjects with elevated levels of social anhedonia when using the times series extracted using MSAA, indicating that temporal dynamics carry important information for classification of social anhedonia. Interestingly, we found that the same time series yielded the highest classification performance in a task classification of the ToM condition. Finally, the spatial network corresponding to that time series included both prefrontal and temporal-parietal regions as well as insula activity, which previously have been related schizotypy and the development of schizophrenia.

OriginalsprogEngelsk
TidsskriftHuman Brain Mapping
Vol/bind40
Udgave nummer17
Sider (fra-til)4965-4981
Antal sider17
ISSN1065-9471
DOI
StatusUdgivet - 1 dec. 2019

Bibliografisk note

© 2019 Wiley Periodicals, Inc.

ID: 57797888