Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Changes in Binding of [(123)I]CLINDE, a High-Affinity Translocator Protein 18 kDa (TSPO) Selective Radioligand in a Rat Model of Traumatic Brain Injury

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. MR-vejledt laserablation til behandling af hjernetumorer og epilepsi

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. A high-resolution in vivo atlas of the human brain's benzodiazepine binding site of GABAA receptors

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. 7T Epilepsy Task Force Consensus Recommendations on the Use of 7T MRI in Clinical Practice

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  4. Identification and metabolic profiling of a novel human gut-derived LEAP2 fragment

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

After traumatic brain injury (TBI), secondary injuries develop, including neuroinflammatory processes that contribute to long-lasting impairments. These secondary injuries represent potential targets for treatment and diagnostics. The translocator protein 18 kDa (TSPO) is expressed in activated microglia cells and upregulated in response to brain injury and therefore a potential biomarker of the neuroinflammatory processes. Second-generation radioligands of TSPO, such as [(123)I]CLINDE, have a higher signal-to-noise ratio as the prototype ligand PK11195. [(123)I]CLINDE has been employed in human studies using single-photon emission computed tomography to image the neuroinflammatory response after stroke. In this study, we used the same tracer in a rat model of TBI to determine changes in TSPO expression. Adult Sprague-Dawley rats were subjected to moderate controlled cortical impact injury and sacrificed at 6, 24, 72 h and 28 days post surgery. TSPO expression was assessed in brain sections employing [(123)I]CLINDE in vitro autoradiography. From 24 h to 28 days post surgery, injured animals exhibited a marked and time-dependent increase in [(123)I]CLINDE binding in the ipsilateral motor, somatosensory and parietal cortex, as well as in the hippocampus and thalamus. Interestingly, binding was also significantly elevated in the contralateral M1 motor cortex following TBI. Craniotomy without TBI caused a less marked increase in [(123)I]CLINDE binding, restricted to the ipsilateral hemisphere. Radioligand binding was consistent with an increase in TSPO mRNA expression and CD11b immunoreactivity at the contusion site. This study demonstrates the applicability of [(123)I]CLINDE for detailed regional and quantitative assessment of glial activity in experimental models of TBI.

OriginalsprogEngelsk
TidsskriftNeuroMolecular Medicine
Vol/bind18
Udgave nummer2
Sider (fra-til)158-69
Antal sider12
ISSN1535-1084
DOI
StatusUdgivet - jun. 2016

ID: 49026734