TY - JOUR
T1 - CGRP receptors mediating CGRP-, adrenomedullin- and amylin-induced relaxation in porcine coronary arteries. Characterization with 'Compound 1' (WO98/11128), a non-peptide antagonist
AU - Hasbak, P
AU - Sams, A
AU - Schifter, S
AU - Longmore, J
AU - Edvinsson, L
PY - 2001/8
Y1 - 2001/8
N2 - 1. Calcitonin gene-related peptide (CGRP), amylin and adrenomedullin (AM) belong to the same family of peptides. Accumulating evidence indicate that the calcitonin (CT) receptor, the CT receptor-like receptor (CRLR) and receptor-activity-modifying proteins (RAMPs) form the basis of all the receptors in this family of peptides. 2. Using reverse transcriptase - polymerase chain reaction the presence of mRNA sequences encoding the CRLR, RAMP1 and RAMP2 were demonstrated in porcine left anterior descending (LAD) coronary arteries, whereas porcine calcitonin (CT) receptor mRNA was not present. The partial porcine mRNA sequences shared 82 - 92% nucleotide identity with human sequences. 3. The human peptides alphaCGRP, betaCGRP, AM and amylin induced relaxation with pEC(50) values of 8.1, 8.1, 6.7 and 6.1 M respectively. 4. The antagonistic properties of a novel non-peptide CGRP antagonist 'Compound 1' (WO98/11128), betaCGRP(8 - 37) and the proposed AM receptor antagonist AM(22 - 52) were compared to the well-known CGRP(1) receptor antagonist alphaCGRP(8 - 37). 5. The alphaCGRP(8 - 37) and betaCGRP(8 - 37) induced concentration-dependent (10(-7) - 10(-5) M) rightward shift of both the alphaCGRP and betaCGRP concentration-response curves. betaCGRP(8 - 37) (10(-6) M) had the same effect as alphaCGRP(8 - 37) (10(-6) M), but with less potent rightward shift of the concentration-response curves for alphaCGRP, AM and amylin. 6. Preincubation with 'Compound 1' (10(-7) - 10(-5) M) and AM(22 - 52) (10(-6) M) had no significant antagonistic effect. 7. In conclusion, the building blocks forming CGRP and AM receptors were present in the porcine LAD, whereas those of the amylin receptor were not. alphaCGRP, betaCGRP, AM and amylin mediated vasorelaxation via the CGRP receptors. No functional response was detected to adrenomedullin via the adrenomedullin receptor.
AB - 1. Calcitonin gene-related peptide (CGRP), amylin and adrenomedullin (AM) belong to the same family of peptides. Accumulating evidence indicate that the calcitonin (CT) receptor, the CT receptor-like receptor (CRLR) and receptor-activity-modifying proteins (RAMPs) form the basis of all the receptors in this family of peptides. 2. Using reverse transcriptase - polymerase chain reaction the presence of mRNA sequences encoding the CRLR, RAMP1 and RAMP2 were demonstrated in porcine left anterior descending (LAD) coronary arteries, whereas porcine calcitonin (CT) receptor mRNA was not present. The partial porcine mRNA sequences shared 82 - 92% nucleotide identity with human sequences. 3. The human peptides alphaCGRP, betaCGRP, AM and amylin induced relaxation with pEC(50) values of 8.1, 8.1, 6.7 and 6.1 M respectively. 4. The antagonistic properties of a novel non-peptide CGRP antagonist 'Compound 1' (WO98/11128), betaCGRP(8 - 37) and the proposed AM receptor antagonist AM(22 - 52) were compared to the well-known CGRP(1) receptor antagonist alphaCGRP(8 - 37). 5. The alphaCGRP(8 - 37) and betaCGRP(8 - 37) induced concentration-dependent (10(-7) - 10(-5) M) rightward shift of both the alphaCGRP and betaCGRP concentration-response curves. betaCGRP(8 - 37) (10(-6) M) had the same effect as alphaCGRP(8 - 37) (10(-6) M), but with less potent rightward shift of the concentration-response curves for alphaCGRP, AM and amylin. 6. Preincubation with 'Compound 1' (10(-7) - 10(-5) M) and AM(22 - 52) (10(-6) M) had no significant antagonistic effect. 7. In conclusion, the building blocks forming CGRP and AM receptors were present in the porcine LAD, whereas those of the amylin receptor were not. alphaCGRP, betaCGRP, AM and amylin mediated vasorelaxation via the CGRP receptors. No functional response was detected to adrenomedullin via the adrenomedullin receptor.
KW - Adrenomedullin
KW - Amino Acid Sequence
KW - Amyloid
KW - Animals
KW - Base Sequence
KW - Calcitonin Gene-Related Peptide
KW - Coronary Vessels
KW - Dose-Response Relationship, Drug
KW - Humans
KW - Intracellular Signaling Peptides and Proteins
KW - Islet Amyloid Polypeptide
KW - Membrane Proteins
KW - Molecular Sequence Data
KW - Peptide Fragments
KW - Peptides
KW - Piperazines
KW - Piperidines
KW - RNA, Messenger
KW - Receptor Activity-Modifying Protein 1
KW - Receptor Activity-Modifying Protein 2
KW - Receptor Activity-Modifying Proteins
KW - Receptors, Calcitonin Gene-Related Peptide
KW - Swine
KW - Vasodilation
U2 - 10.1038/sj.bjp.0704210
DO - 10.1038/sj.bjp.0704210
M3 - Journal article
C2 - 11498528
SN - 0007-1188
VL - 133
SP - 1405
EP - 1413
JO - British Journal of Pharmacology
JF - British Journal of Pharmacology
IS - 8
ER -