TY - JOUR
T1 - Brain perfusion estimation by Tikhonov model-free deconvolution in a long axial field of view PET/CT scanner exploring five different PET tracers
AU - Larsson, Henrik Bo Wiberg
AU - Law, Ian
AU - Andersen, Thomas L
AU - Andersen, Flemming L
AU - Fischer, Barbara M
AU - Vestergaard, Mark B
AU - Larsson, Tanne S W
AU - Lindberg, Ulrich
N1 - © 2023. The Author(s).
PY - 2024
Y1 - 2024
N2 - PURPOSE: New total-body PET scanners with a long axial field of view (LAFOV) allow for higher temporal resolution due to higher sensitivity, which facilitates perfusion estimation by model-free deconvolution. Fundamental tracer kinetic theory predicts that perfusion can be estimated for all tracers despite their different fates given sufficiently high temporal resolution of 1 s or better, bypassing the need for compartment modelling. The aim of this study was to investigate whether brain perfusion could be estimated using model-free Tikhonov generalized deconvolution for five different PET tracers, [15O]H2O, [11C]PIB, [18F]FE-PE2I, [18F]FDG and [18F]FET. To our knowledge, this is the first example of a general model-free approach to estimate cerebral blood flow (CBF) from PET data.METHODS: Twenty-five patients underwent dynamic LAFOV PET scanning (Siemens, Quadra). PET images were reconstructed with an isotropic voxel resolution of 1.65 mm3. Time framing was 40 × 1 s during bolus passage followed by increasing framing up to 60 min. AIF was obtained from the descending aorta. Both voxel- and region-based calculations of perfusion in the thalamus were performed using the Tikhonov method. The residue impulse response function was used to estimate the extraction fraction of tracer leakage across the blood-brain barrier.RESULTS: CBF ranged from 37 to 69 mL blood min-1 100 mL of tissue-1 in the thalamus. Voxelwise calculation of CBF resulted in CBF maps in the physiologically normal range. The extraction fractions of [15O]H2O, [18F]FE-PE2I, [11C]PIB, [18F]FDG and [18F]FET in the thalamus were 0.95, 0.78, 0.62, 0.19 and 0.03, respectively.CONCLUSION: The high temporal resolution and sensitivity associated with LAFOV PET scanners allow for noninvasive perfusion estimation of multiple tracers. The method provides an estimation of the residue impulse response function, from which the fate of the tracer can be studied, including the extraction fraction, influx constant, volume of distribution and transit time distribution, providing detailed physiological insight into normal and pathologic tissue.
AB - PURPOSE: New total-body PET scanners with a long axial field of view (LAFOV) allow for higher temporal resolution due to higher sensitivity, which facilitates perfusion estimation by model-free deconvolution. Fundamental tracer kinetic theory predicts that perfusion can be estimated for all tracers despite their different fates given sufficiently high temporal resolution of 1 s or better, bypassing the need for compartment modelling. The aim of this study was to investigate whether brain perfusion could be estimated using model-free Tikhonov generalized deconvolution for five different PET tracers, [15O]H2O, [11C]PIB, [18F]FE-PE2I, [18F]FDG and [18F]FET. To our knowledge, this is the first example of a general model-free approach to estimate cerebral blood flow (CBF) from PET data.METHODS: Twenty-five patients underwent dynamic LAFOV PET scanning (Siemens, Quadra). PET images were reconstructed with an isotropic voxel resolution of 1.65 mm3. Time framing was 40 × 1 s during bolus passage followed by increasing framing up to 60 min. AIF was obtained from the descending aorta. Both voxel- and region-based calculations of perfusion in the thalamus were performed using the Tikhonov method. The residue impulse response function was used to estimate the extraction fraction of tracer leakage across the blood-brain barrier.RESULTS: CBF ranged from 37 to 69 mL blood min-1 100 mL of tissue-1 in the thalamus. Voxelwise calculation of CBF resulted in CBF maps in the physiologically normal range. The extraction fractions of [15O]H2O, [18F]FE-PE2I, [11C]PIB, [18F]FDG and [18F]FET in the thalamus were 0.95, 0.78, 0.62, 0.19 and 0.03, respectively.CONCLUSION: The high temporal resolution and sensitivity associated with LAFOV PET scanners allow for noninvasive perfusion estimation of multiple tracers. The method provides an estimation of the residue impulse response function, from which the fate of the tracer can be studied, including the extraction fraction, influx constant, volume of distribution and transit time distribution, providing detailed physiological insight into normal and pathologic tissue.
KW - Brain/diagnostic imaging
KW - Fluorodeoxyglucose F18
KW - Humans
KW - Perfusion
KW - Positron Emission Tomography Computed Tomography
KW - Positron-Emission Tomography/methods
KW - Long-axial field of view PET
KW - Cerebral blood flow
KW - Extraction fraction
KW - Model-free deconvolution
UR - http://www.scopus.com/inward/record.url?scp=85174290314&partnerID=8YFLogxK
U2 - 10.1007/s00259-023-06469-w
DO - 10.1007/s00259-023-06469-w
M3 - Journal article
C2 - 37843600
SN - 1619-7070
VL - 51
SP - 707
EP - 720
JO - European Journal of Nuclear Medicine and Molecular Imaging
JF - European Journal of Nuclear Medicine and Molecular Imaging
IS - 3
ER -