TY - JOUR
T1 - Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor
AU - Lecomte, Julie
AU - Masset, Anne
AU - Blacher, Silvia
AU - Maertens, Ludovic
AU - Gothot, André
AU - Delgaudine, Marie
AU - Bruyère, Françoise
AU - Carnet, Oriane
AU - Paupert, Jenny
AU - Illemann, Martin
AU - Foidart, Jean-Michel
AU - Lund, Ida K
AU - Høyer-Hansen, Gunilla
AU - Noel, Agnes
PY - 2012
Y1 - 2012
N2 - Carcinoma-associated fibroblasts are key contributors of the tumor microenvironment that regulates carcinoma progression. They consist of a heterogeneous cell population with diverse origins, phenotypes, and functions. In the present report, we have explored the contribution of bone marrow (BM)-derived cells to generate different fibroblast subsets that putatively produce the matrix metalloproteinase 13 (MMP13) and affect cancer cell invasion. A murine model of skin carcinoma was applied to mice, irradiated, and engrafted with BM isolated from green fluorescent protein (GFP) transgenic mice. We provide evidence that one third of BM-derived GFP(+) cells infiltrating the tumor expressed the chondroitin sulfate proteoglycan NG2 (pericytic marker) or α-smooth muscle actin (α-SMA, myofibroblast marker), whereas almost 90% of Thy1(+) fibroblasts were originating from resident GFP-negative cells. MMP13producing cells were exclusively α-SMA(+) cells and derived from GFP(+) BM cells. To investigate their impact on tumor invasion, we isolated mesenchymal stem cells (MSCs) from the BM of wild-type and MMP13-deficient mice. Wild-type MSC promoted cancer cell invasion in a spheroid assay, whereas MSCs obtained from MMP13-deficient mice failed to. Our data support the concept of fibroblast subset specialization with BM-derived α-SMA(+) cells being the main source of MMP13, a stromal mediator of cancer cell invasion.
AB - Carcinoma-associated fibroblasts are key contributors of the tumor microenvironment that regulates carcinoma progression. They consist of a heterogeneous cell population with diverse origins, phenotypes, and functions. In the present report, we have explored the contribution of bone marrow (BM)-derived cells to generate different fibroblast subsets that putatively produce the matrix metalloproteinase 13 (MMP13) and affect cancer cell invasion. A murine model of skin carcinoma was applied to mice, irradiated, and engrafted with BM isolated from green fluorescent protein (GFP) transgenic mice. We provide evidence that one third of BM-derived GFP(+) cells infiltrating the tumor expressed the chondroitin sulfate proteoglycan NG2 (pericytic marker) or α-smooth muscle actin (α-SMA, myofibroblast marker), whereas almost 90% of Thy1(+) fibroblasts were originating from resident GFP-negative cells. MMP13producing cells were exclusively α-SMA(+) cells and derived from GFP(+) BM cells. To investigate their impact on tumor invasion, we isolated mesenchymal stem cells (MSCs) from the BM of wild-type and MMP13-deficient mice. Wild-type MSC promoted cancer cell invasion in a spheroid assay, whereas MSCs obtained from MMP13-deficient mice failed to. Our data support the concept of fibroblast subset specialization with BM-derived α-SMA(+) cells being the main source of MMP13, a stromal mediator of cancer cell invasion.
U2 - 10.1593/neo.121092
DO - 10.1593/neo.121092
M3 - Journal article
C2 - 23097628
SN - 1522-8002
VL - 14
SP - 943
EP - 951
JO - Neoplasia
JF - Neoplasia
IS - 10
ER -