TY - JOUR
T1 - Biomimetic-modified bioprosthetic heart valves with Cysteine-Alanine-Glycine peptide for anti-thrombotic, endothelialization and anti-calcification
AU - Liang, Xuyue
AU - Yang, Li
AU - Lei, Yang
AU - Zhang, Shumang
AU - Chen, Liang
AU - Hu, Cheng
AU - Wang, Yunbing
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/10/1
Y1 - 2023/10/1
N2 - In recent years, bioprosthetic heart valves (BHVs) prepared by cross-linking porcine or bovine pericardium with glutaraldehyde (Glut) have received widespread attention due to their excellent hemocompatibility and hydrodynamic properties. However, the failure of BHVs induced by thrombosis and difficulty in endothelialization still exists in clinical practice. Improving the biocompatibility and endothelialization potential of BHVs is conducive to promoting their anti-thrombosis properties and prolonging their service life. Herein, Cysteine-Alanine-Glycine (CAG) peptide was introduced into the biomimetic BHV materials modified by 2-methacryloyloxyethyl phosphorylcholine (MPC) to improve their anti-thrombosis and promoting-endothelialization performances. MPC can improve the anti-adsorption performance of BHV materials, as well as, CAG contributes to the adhesion and proliferation of endothelial cells on the surface of BHV materials. The results of experiments showed that the biomimetic modification strategy with MPC and CAG reduce the thrombosis of BHV materials and improve their endothelialization in vitro. More importantly, the calcification of BHV significantly reduced by inhibiting the expression of M1 macrophage-related factors (IL-6, iNOS) and promoting the expression of M2 macrophage-related factors (IL-10, CD206). We believe that the valve-modified strategy is expected to provide effective solutions to clinical valve problems.
AB - In recent years, bioprosthetic heart valves (BHVs) prepared by cross-linking porcine or bovine pericardium with glutaraldehyde (Glut) have received widespread attention due to their excellent hemocompatibility and hydrodynamic properties. However, the failure of BHVs induced by thrombosis and difficulty in endothelialization still exists in clinical practice. Improving the biocompatibility and endothelialization potential of BHVs is conducive to promoting their anti-thrombosis properties and prolonging their service life. Herein, Cysteine-Alanine-Glycine (CAG) peptide was introduced into the biomimetic BHV materials modified by 2-methacryloyloxyethyl phosphorylcholine (MPC) to improve their anti-thrombosis and promoting-endothelialization performances. MPC can improve the anti-adsorption performance of BHV materials, as well as, CAG contributes to the adhesion and proliferation of endothelial cells on the surface of BHV materials. The results of experiments showed that the biomimetic modification strategy with MPC and CAG reduce the thrombosis of BHV materials and improve their endothelialization in vitro. More importantly, the calcification of BHV significantly reduced by inhibiting the expression of M1 macrophage-related factors (IL-6, iNOS) and promoting the expression of M2 macrophage-related factors (IL-10, CD206). We believe that the valve-modified strategy is expected to provide effective solutions to clinical valve problems.
KW - Anti-thrombotic
KW - Biomimetic modication
KW - Bioprosthetic heart valves
KW - Endothelialization
UR - http://www.scopus.com/inward/record.url?scp=85167626762&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2023.126244
DO - 10.1016/j.ijbiomac.2023.126244
M3 - Journal article
C2 - 37562473
AN - SCOPUS:85167626762
SN - 0141-8130
VL - 250
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 126244
ER -