Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Bag-of-frequencies: a descriptor of pulmonary nodules in computed tomography images

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Classification of Volumetric Images Using Multi-Instance Learning and Extreme value Theorem

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Geodesic atlas-based labeling of anatomical trees: Application and evaluation on airways extracted from CT

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Attenuation correction for the HRRT PET-scanner using transmission scatter correction and total variation regularization

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. List-mode PET motion correction using markerless head tracking: proof-of-concept with scans of human subject

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. Motion tracking for medical imaging: a nonvisible structured light tracking approach

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Francesco Ciompi
  • Colin Jacobs
  • Ernst Th Scholten
  • Mathilde M W Wille
  • Pim A de Jong
  • Mathias Prokop
  • Bram van Ginneken
Vis graf over relationer

We present a novel descriptor for the characterization of pulmonary nodules in computed tomography (CT) images. The descriptor encodes information on nodule morphology and has scale-invariant and rotation-invariant properties. Information on nodule morphology is captured by sampling intensity profiles along circular patterns on spherical surfaces centered on the nodule, in a multi-scale fashion. Each intensity profile is interpreted as a periodic signal, where the Fourier transform is applied, obtaining a spectrum. A library of spectra is created and labeled via unsupervised clustering, obtaining a Bag-of-Frequencies, which is used to assign each spectra a label. The descriptor is obtained as the histogram of labels along all the spheres. Additional contributions are a technique to estimate the nodule size, based on the sampling strategy, as well as a technique to choose the most informative plane to cut a 2-D view of the nodule in the 3-D image. We evaluate the descriptor on several nodule morphology classification problems, namely discrimination of nodules versus vascular structures and characterization of spiculation. We validate the descriptor on data from European screening trials NELSON and DLCST and we compare it with state-of-the-art approaches for 3-D shape description in medical imaging and computer vision, namely SPHARM and 3-D SIFT, outperforming them in all the considered experiments.

OriginalsprogEngelsk
TidsskriftIEEE Transactions on Medical Imaging
Vol/bind34
Udgave nummer4
Sider (fra-til)962-73
Antal sider12
ISSN0278-0062
DOI
StatusUdgivet - apr. 2015
Eksternt udgivetJa

ID: 46237866