Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Automatic Pulmonary Nodule Detection Applying Deep Learning or Machine Learning Algorithms to the LIDC-IDRI Database: A Systematic Review

Publikation: Bidrag til tidsskriftReviewForskningpeer review

DOI

  1. Hand-Held Ultrasound Devices Compared with High-End Ultrasound Systems: A Systematic Review

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  2. Prostate Artery Embolization for Lower Urinary Tract Symptoms in Men Unfit for Surgery

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Disseminated Bartonella henselae Infection Visualized by [18F]FDG-PET/CT and MRI

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Very Early Response Evaluation by PET/MR in Patients with Lung Cancer-Timing and Feasibility

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Elastography in Breast Imaging

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Simulation-Based Training of Ultrasound-Guided Procedures in Radiology - A Systematic Review

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Elastography in Non-Hepatic Applications: Update 2018

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Vis graf over relationer

The aim of this study was to provide an overview of the literature available on machine learning (ML) algorithms applied to the Lung Image Database Consortium Image Collection (LIDC-IDRI) database as a tool for the optimization of detecting lung nodules in thoracic CT scans. This systematic review was compiled according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Only original research articles concerning algorithms applied to the LIDC-IDRI database were included. The initial search yielded 1972 publications after removing duplicates, and 41 of these articles were included in this study. The articles were divided into two subcategories describing their overall architecture. The majority of feature-based algorithms achieved an accuracy >90% compared to the deep learning (DL) algorithms that achieved an accuracy in the range of 82.2%⁻97.6%. In conclusion, ML and DL algorithms are able to detect lung nodules with a high level of accuracy, sensitivity, and specificity using ML, when applied to an annotated archive of CT scans of the lung. However, there is no consensus on the method applied to determine the efficiency of ML algorithms.

OriginalsprogEngelsk
TidsskriftDiagnostics
Vol/bind9
Udgave nummer1
Sider (fra-til)29
Antal sider11
ISSN2075-4418
DOI
StatusUdgivet - 7 mar. 2019

ID: 58439998