Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Automatic multi-modal intelligent seizure acquisition (MISA) system for detection of motor seizures from electromyographic data and motion data

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Integrated model of insulin and glucose kinetics describing both hepatic glucose and pancreatic insulin regulation

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Digital questionnaire platform in the Danish Blood Donor Study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. BCI using imaginary movements: the simulator

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Changes in autonomic tone during delirium in acute stroke patients assessed by pupillometry and skin conductance

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Cortical Frontoparietal Network Dysfunction in CHMP2B-Frontotemporal Dementia

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Changes in the left temporal microstate are a sign of cognitive decline in patients with Alzheimer's disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Altered self-recognition in patients with schizophrenia

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  5. EEG with extreme delta brush in young female with methotrexate neurotoxicity supports NMDA receptor involvement

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Isa Conradsen
  • Sándor Beniczky
  • Peter Wolf
  • Troels W Kjaer
  • Thomas Sams
  • Helge B D Sorensen
Vis graf over relationer
The objective is to develop a non-invasive automatic method for detection of epileptic seizures with motor manifestations. Ten healthy subjects who simulated seizures and one patient participated in the study. Surface electromyography (sEMG) and motion sensor features were extracted as energy measures of reconstructed sub-bands from the discrete wavelet transformation (DWT) and the wavelet packet transformation (WPT). Based on the extracted features all data segments were classified using a support vector machine (SVM) algorithm as simulated seizure or normal activity. A case study of the seizure from the patient showed that the simulated seizures were visually similar to the epileptic one. The multi-modal intelligent seizure acquisition (MISA) system showed high sensitivity, short detection latency and low false detection rate. The results showed superiority of the multi-modal detection system compared to the uni-modal one. The presented system has a promising potential for seizure detection based on multi-modal data.
OriginalsprogEngelsk
TidsskriftComputer Methods and Programs in Biomedicine
ISSN0169-2607
DOI
StatusUdgivet - 2011

ID: 33143434