Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Evaluation of 2D super-resolution ultrasound imaging of the rat renal vasculature using ex vivo micro-computed tomography

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Infants with congenital heart defects have reduced brain volumes

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  1. Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Recommendations for Implementing Lung Cancer Screening with Low-Dose Computed Tomography in Europe

    Publikation: Bidrag til tidsskriftReviewForskningpeer review

  3. Classification of Volumetric Images Using Multi-Instance Learning and Extreme value Theorem

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Increased respiratory morbidity in individuals with interstitial lung abnormalities

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  • Antonio Garcia-Uceda
  • Raghavendra Selvan
  • Zaigham Saghir
  • Harm A.W.M. Tiddens
  • Marleen de Bruijne
Vis graf over relationer

This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT’09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT’09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT’09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity.

OriginalsprogEngelsk
Artikelnummer16001
TidsskriftScientific Reports
Vol/bind11
Udgave nummer1
ISSN2045-2322
DOI
StatusUdgivet - dec. 2021

Bibliografisk note

Publisher Copyright:
© 2021, The Author(s).

ID: 69367390