Forskning
Udskriv Udskriv
Switch language
Region Hovedstaden - en del af Københavns Universitetshospital
Udgivet

Autoimmune antibody decline in Parkinson's disease and Multiple System Atrophy; a step towards immunotherapeutic strategies

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

DOI

  1. Epigenetic modulation of AREL1 and increased HLA expression in brains of multiple system atrophy patients

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  2. Risk of Multiple System Atrophy and the Use of Anti-Inflammatory Drugs: A Danish Register-Based Case-Control Study

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  3. Distinct Autoimmune Anti-α-Synuclein Antibody Patterns in Multiple System Atrophy and Parkinson’s Disease

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

  4. Authors' response: Association between IBD and Parkinson's disease: seek and you shall find?

    Publikation: Bidrag til tidsskriftKommentar/debatForskning

Vis graf over relationer

BACKGROUND: Parkinson's' disease (PD) and Multiple System Atrophy (MSA) are progressive brain disorders characterized by intracellular accumulations of α-synuclein and nerve cell loss in specific brain areas. This loss causes problems with movement, balance and/or autonomic functions. Naturally occurring autoantibodies (NAbs) play potentially an important role in clearing or/and blocking circulating pathological proteins. Little is known about the functional properties of anti-α-synuclein NAbs in PD and MSA, and there have been opposing reports regarding their plasma concentrations in these disorders.

METHODS: We have investigated the apparent affinity of anti-α-synuclein NAbs in plasma samples from 46 PD patients, 18 MSA patients and 41 controls using competitive enzyme-linked immunosorbent assay (ELISA) and Meso Scale Discovery (MSD) set-ups.

RESULTS: We found that the occurrence of high affinity anti-α-synuclein NAbs in plasma from PD patients is reduced compared to healthy controls, and nearly absent in plasma from MSA patients. Also, levels of α-synuclein/NAbs immunocomplexes is substantially reduced in plasma from both patient groups. Further, cross binding of anti-α-synuclein NAbs with β- and γ-synuclein monomers suggest, the high affinity anti-α-synuclein plasma component, seen in healthy individuals, is directed mainly against C-terminal epitopes. Furthermore, we also observed reduced occurrence of high affinity anti-phosphorylated-α-synuclein NAbs in plasma from PD and MSA patients.

CONCLUSIONS: One interpretation implies that these patients may have impaired ability to clear and/or block the effects of pathological α-synuclein due to insufficient/absent concentration of NAbs and as such provides a rationale for testing immune-based therapeutic strategies directed against pathological α-synuclein. Following this interpretation, we can hypothesize that high affinity autoantibodies efficiently bind and clear potentially pathological species of α-synuclein in healthy brain, and that this mechanism is impaired or absent in PD and MSA patients.

OriginalsprogEngelsk
TidsskriftMolecular Neurodegeneration
Vol/bind12
Udgave nummer1
Sider (fra-til)44
ISSN1750-1326
DOI
StatusUdgivet - 7 jun. 2017

ID: 50615727